Supporting Information

Preparation, characterization, and catalytic performances of a pyrazine dicarboxylate-bridging rare-earth-containing polytungstoarsenate aggregate for selective oxidation of thiophenes and deep desulfurization of model fuels

Yanjun Niu, Qiaofei Xu, Yuan Wang, Zhao Li, Jingkun Lu, Pengtao Ma, Chao Zhang, Jingyang Niu* and Jingping Wang*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China

E-mail:

Fax: (+86)371-23886876.

CONTENTS

Section 1 Additional Structural FigureSection 2 Experimental SectionSection 3 Catalytic propertiesSection 4 References

Section 1 Additional Structural Figure

Figure S1. The 3D structure of 1

Figure S2. The IR spectra of the precursor free H_2pzdc ligand, $\{As_2W_{19}\}$, and 1

Figure S3. The experimental (a) and simulated (b) PXRD pattern of 1

Figure S4. TG curve of 1 in a N₂ atmosphere in the range of 25–800 °C.

The TGA curve (Figure S4) shows two steps of weight loss at the range of 25–800 °C. The first weight loss is 3.10 % (calcd 7.2 %) from 25 to 400 °C, assigned to the release of 22 lattice water molecules and 14 coordinated water molecules. The second weight loss is 8.60 % (calcd 8.2 %) at the range of 600–800 °C, which can be ascribed to the removal of 2 ligands, 3 constitutional water molecules and 1.5 As₂O₃ molecules. The first weight loss is more than the theoretical value because the samples used for thermogravimetric analyses were easy to weathering.

Figure S6. The UV–vis spectra of 1 at different pH values.

e S7. Solid-state emission spectra of 1 and H_2pzdc at room temperature.

Section 3 Catalytic properties

Table S1. Catalytic results for the oxidation of DBT in the presence of different POM catalysts.

catalyst	solvent	O/S	Tem. (°C)	Time (h)	Conv. (%)	Ref.
$TBA_4H_2[BW_{11}Mn(H_2O)O_{39}]\cdot H_2O$	CH ₃ CN	6	22-24	1	100	1
$TBA_4[\gamma\text{-}HPV_2W_{10}O_{40}]$	CH ₃ CN/ t-BuOH	1	60	1	88	2
$[(C_{18}H_{37})_2(CH_3)_2N]_7PW_{11}O_{39}$	$C_4H_8O_2$	2.5	60	0.5	99	3
$H_6[(C_6H_4NO_2Cu(H_2O)_4)]_2[Mn_2V_{22}O_{64}]\cdot 28H_2O$	CH_2Cl_2	3	60	1.67	82	4
Fe ₃ O ₄ -PEI-PW ₁₂ O ₄₀	CH ₃ CN	10	30	10	99	5
$Fe_{3}O_{4}\!\!-\!\!SiO_{2}\!\!-\!\!NH_{3}\!\!-\!\!PW_{12}O_{40}$	CH ₃ CN	10	30	10	97	5
$H_3PW_{12}O_{40}$	CH ₃ CN	10	30	10	99	5
$\begin{split} Na_{10}K_{22}[Zr_{24}O_{22}(OH)_{10}(H_2O)_2(W_2O_{10}H)_2-\\ (GeW_9O_{34})_4(GeW_8O_{31})_2]\cdot 85H_2O \end{split}$	CH ₃ CN	3	60	2	trace	6
$[Co(BBPTZ)_3][HPMo_{12}O_{40}] \cdot 24H_2O$	CH_2Cl_2	3.75	50	8	99	7
[Co ^{II} (HBBTZ)(BBTZ) _{2.5}][PMo ₁₂ O ₄₀]	CH_2Cl_2	3.75	50	9	98	7
[Bmim] ₃ PMo ₁₂ O ₄₀ /SiO ₂	$\mathrm{C_7H_8}$	3	60	1	88	8
$[\gamma-SiW_{10}O_{34}(H_2O)_2]^{4-}$ @MCM-41-NH ⁴⁺	CH ₃ CN	2	40	24	100	9

Entry	Catalyst	Substrate	%Conversion ^b
1	/		34
2	$K_{14}[As_2W_{19}O_{67}(H_2O)]$ (2)	S	20.4
3	2,3-H ₂ pzdc (3)		21
4	$CeCl_3 \cdot 7H_2O$ (4)		33
5	1		100
6	2+3+4		56

Table S2. Oxidation of DBT Using Different Catalysts^a

^a Reaction conditions: the substrate (0.6 mmol), the catalyst corresponding to the substrate/catalyst (S/C) molar ratio of 300; the internal standard (toluene, 0.6 mmol) and H_2O_2 (1.8 mmol) were stirred in 2.0 mL of CH₃CN at room temperature for 1h. ^b Conversion values determined by GC-FID.

Figure. S8 Typical GC-FID chromatograms illustrating the DBT oxidation reaction profile with H_2O_2 in the presence of 1 for the S/C molar ratio of 300 at different times.

Figure S9. Reaction conditions: the substrate (0.6 mmol), the catalyst corresponding to the substrate/catalyst (S/C) molar ratio of 300; the internal standard (toluene, 0.6 mmol) and H_2O_2 (1.8 mmol) were stirred in 2.0 mL of CH₃CN at room temperature for 1h.

Figure S10. IR spectra of 1 before and after the recycling tests

Figure S11. Reaction conditions: two substrates (0.06 mmol DBT, 0.06 mmol BT, a total of 0.12 mmol) and the catalyst were dissolved in 500 μ L of CH₃CN, and the total reaction volume was completed with 1.5 mL of octane. Addition of H₂O₂ and completion of the reaction were done as indicated above.

Section 4 References

- [1] T. A. G. Duarte, S. M. G. Pires, I. C. M. S. Santos, M. M. Q. Simões, M. G. P. M. S. Neves, A. M.
- V. Cavaleiro and J. A. S. Cavaleiro, Catal. Sci. Technol., 2016, 6, 3271-3278.
- [2] T. Yamaura, K. Kamata, K. Yamaguchi and N. Mizuno, Catal. Today., 2013, 203, 76-80.
- [3] X. Xue, W. Zhao, B. Ma and Y. Ding, Catal. Commun., 2012, 29, 73-76.
- [4] T. Wang, Y. Lu, D. Liu and E. Wang, Inorg. Chem. Commun., 2016, 69, 47-51.
- [5] Z. Zhang, F. Zhang, Q. Zhu, W. Zhao, B. Ma and Y. Ding, J. Colloid Interface Sci., 2011, 360, 189–194.
- [6] L. Huang, S.-S. Wang, J.-W. Zhao, L. Cheng and G.-Y. Yang, J. Am. Chem. Soc., 2014, 136, 7637– 7642.
- [7] X.-L. Hao, Y.-Y. Ma, H.-Y. Zang, Y.-H. Wang, Y.-G. Li and E.-B. Wang, Chem. Eur. J., 2015,

21, 3778–3784.

- [8] J. Zhang, A. Wang, X. Li and X. Ma, J. Catal., 2011, 279, 269–275.
- [9] D. J. Thompson, Y. Zhang and T. Ren, J. Mol. Catal. Chem., 2014, 392, 188–193.