SUPPORTING INFORMATION

Copper(II)-benzotriazole coordination compounds in click chemistry: A diagnostic reactivity study

Edward Loukopoulos,^a Alaa Abdul-Sada,^a Gizella Csire,^b Csilla Kállay,^c Adam Brookfield,^d

Graham J. Tizzard,^e Simon J. Coles,^e Ioannis N. Lykakis^f and George E. Kostakis*a

^a Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ,

UK. E-mail: <u>G.Kostakis@sussex.ac.uk</u>

^b Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.

° MTA-DE Redox and Homogeneous Catalytic Reaction

^d School of Chemistry, The University of Manchester, Manchester M13 9PL, UK. Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Hungary.

^eUK National Crystallography Service, Chemistry, University of Southampton SO1 71BJ, U.K

^fDepartment of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Table of contents					
Crystallographic data					
Additional figures of crystal structures	S5-S7				
Characterization data for ligands $L^5 - L^7$	S8-S13				
Characterization data of the Cu complexes	S14-S24				
Evaluation of catalytic conditions	S25				
Characterization data of products (¹ H, ¹³ C NMR and HRMS spectra)	S26-S51				
References	S52				

Crystallographic Data

Ligand	L1	L ⁶	L ⁷
Empirical formula	$C_{20}H_{16}N_{6}$	C ₁₄ H ₁₈ N ₄ O ₂	C ₁₃ H ₁₁ N ₃
Formula weight	340.39	274.32	209.25
Temperature/K	100(2)	173.0	173.0
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	$P2_1/c$
a/Å	6.3881(4)	8.1128(8)	11.5768(16)
b/Å	7.6794(9)	8.7716(11)	5.9774(8)
c/Å	17.8944(12)	10.9028(11)	16.119(2)
α/°	87.348(7)	80.648(10)	90
β/°	89.529(5)	69.951(9)	106.541(14)
γ/°	67.155(8)	84.374(10)	90
Volume/Å ³	808.07(13)	718.41(15)	1069.3(3)
Ζ	2	2	4
$\rho_{calc}g/cm^3$	1.399	1.268	1.300
µ/mm ¹	0.089	0.716	0.634
F(000)	356.0	292.0	440.0
Crystal size/mm ³	$0.12\times0.06\times0.04$	$0.24 \times 0.16 \times 0.12$	$0.34 \times 0.28 \times 0.2$
Radiation	Mo K α ($\lambda = 0.71075$)	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$
20 range for data collection/°	4.558 to 54.96	8.716 to 141.898	7.966 to 142.23
Index ranges	$\begin{array}{c} -8 \leq h \leq 8, -9 \leq k \leq 9, -23 \leq l \leq \\ 23 \end{array}$	$-9 \le h \le 7, -9 \le k \le 10, -13 \le l \le 12$	$-14 \le h \le 12, -5 \le k \le 7, -19 \le l \le 19$
Reflections collected	13024	3676	3132
Independent reflections	3650 [R _{int} = 0.0484, R _{sigma} = 0.0480]	2629 [$R_{int} = 0.0358$, $R_{sigma} = 0.0721$]	1981 [$R_{int} = 0.0368$, $R_{sigma} = 0.0464$]
Data/restraints/parameters	3650/0/235	2629/0/187	1981/0/145
Goodness-of-fit on F ²	1.118	0.986	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0994, wR_2 = 0.2643$	$R_1 = 0.0484, WR_2 = 0.1108$	$R_1 = 0.0606, wR_2 = 0.1614$
Final R indexes [all data]	$R_1 = 0.1229, wR_2 = 0.2788$	$R_1 = 0.0730, wR_2 = 0.1284$	$R_1 = 0.0753, WR_2 = 0.1860$
Largest diff. peak/hole / e Å ⁻³	0.68/-0.44	0.20/-0.26	0.20/-0.27

Table S1. Crystal data and structure refinement for ligands L¹, L⁶, L⁷.

 Table S2. Crystal data and structure refinement for compounds 1-5.

Compound	1	2	3	4	5
Empirical formula	C ₂₆ H ₂₂ CuF ₆ N ₈ O ₆ S ₂	C46H36CuF6N8O6S2	C ₃₂ H ₃₁ CuF ₆ N ₉ O ₆ S ₂	C ₃₆ H _{42.67} CuF ₆ N ₈ O _{9.33} S	$C_{96}H_{88}Cu_4F_{12}N_{24}O_{16}S_4$
Formula weight	784.17	1038.49	879.32	978.43	2444.30
Temperature/K	173.0	173.0	100.0	100(2)	100(2)
Crystal system	triclinic	triclinic	monoclinic	monoclinic	triclinic
Space group	P-1	P-1	C2/c	$P2_1/n$	P-1
a/Å	9.3801(5)	9.0686(6)	14.1878(5)	20.8910(7)	16.6451(3)
b/Å	13.3284(8)	11.2199(6)	13.3086(5)	9.2748(2)	17.1433(2)
c/Å	16.0985(8)	12.0883(8)	40.4807(13)	25.1344(9)	19.1060(3)
α/°	107.132(5)	115.102(6)	90	90	90.7040(10)
β/°	103.696(5)	104.812(6)	90.608(3)	114.487(4)	90.0420(10)
$\gamma/^{\circ}$	100.131(5)	93.484(5)	90	90	97.2670(10)
Volume/Å ³	1802.08(18)	1056.48(13)	7643.1(5)	4432.0(3)	5407.72(14)
Z	2	1	8	4	2
$\rho_{calc}g/cm^3$	1.445	1.632	1.528	1.466	1.501
μ/mm^1	2.659	2.439	0.765	2.336	2.420
F(000)	794.0	531.0	3592.0	2017.0	2496.0
Crystal size/mm ³	$0.14 \times 0.11 \times 0.07$	$0.22\times0.17\times0.14$	$0.1\times0.06\times0.05$	$0.1\times0.08\times0.03$	$0.12\times0.1\times0.01$
Radiation	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$	MoKα (λ = 0.71073)	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	10.024 to 142.2	8.5 to 142.266	4.024 to 52.744	7.172 to 136.48	6.916 to 133.18
Index ranges	$-11 \le h \le 11, -16 \le k \le 13, -13 \le l \le 19$	$\begin{array}{c} \text{-}6 \leq h \leq 11, \text{-}13 \leq \\ k \leq 13, \text{-}14 \leq l \leq 14 \end{array}$	$-17 \le h \le 17, -16 \le k \le 16, -50 \le l \le 50$	$\begin{array}{c} \text{-}24 \leq h \leq 25, \text{-}11 \leq k \leq \\ 10, \text{-}30 \leq l \leq 30 \end{array}$	$\begin{array}{l} \textbf{-19} \leq h \leq 19, \textbf{-20} \leq k \leq \\ 20, \textbf{-22} \leq l \leq 22 \end{array}$
Reflections collected	9434	5327	42305	41244	50455
Independent reflections	$\begin{array}{l} 6550 \; [\mathrm{R}_{\mathrm{int}} = \\ 0.0463, \; \mathrm{R}_{\mathrm{sigma}} = \\ 0.0730] \end{array}$	$3844 [R_{int} = 0.0921, R_{sigma} = 0.0976]$	7794 [$R_{int} =$ 0.0735, $R_{sigma} =$ 0.0429]	$\begin{array}{l} 8098 \; [R_{int} = 0.0843, \\ R_{sigma} = 0.0564] \end{array}$	$18266 [R_{int} = 0.0517, R_{sigma} = 0.0552]$
Data/restraints/parameters	6550/0/444	3844/1/313	7794/0/506	8098/0/616	18266/1296/1442
Goodness-of-fit on F ²	1.048	1.048	1.029	1.007	1.010
Final R indexes $[I \ge 2\sigma$ $(I)]$	$R_1 = 0.0657,$ $wR_2 = 0.1742$	$R_1 = 0.0682,$ w $R_2 = 0.1736$	$R_1 = 0.0938,$ w $R_2 = 0.2448$	$R_1 = 0.0606, WR_2 = 0.1638$	$R_1 = 0.0609, wR_2 = 0.1626$
Final R indexes [all data]	$R_1 = 0.0890,$ $wR_2 = 0.1921$	$R_1 = 0.0883,$ $wR_2 = 0.1948$	$R_1 = 0.1173,$ $wR_2 = 0.2638$	$R_1 = 0.0765, wR_2 = 0.1744$	$R_1 = 0.0818, wR_2 = 0.1769$
Largest diff. peak/hole / e \dot{A}^{-3}	1.66/-0.65	1.06/-0.81	1.59/-0.89	1.48/-1.02	1.06/-0.55

Table S3. Crystal data and structure refinement for triazoles 18aa - 18ad.

Triazole	18 aa	18ab	18ac	18ad
Empirical formula	$C_{15}H_{13}N_3$	$C_{16}H_{15}N_{3}O$	$C_{13}H_{17}N_3$	$C_{10}H_{11}N_{3}O$

Formula weight	235.28	265.31	215.29	189.22
Temperature/K	173.0	173.0	173.0	173.0
Crystal system	orthorhombic	monoclinic	monoclinic	triclinic
Space group	$Pna2_1$	$P2_1$	$P2_1/c$	P-1
a/Å	11.2241(4)	8.1339(8)	13.0813(10)	8.2035(12)
b/Å	19.3350(6)	5.6565(6)	5.4875(3)	11.0403(11)
c/Å	5.5817(2)	14.5299(16)	17.7677(16)	11.2020(11)
$\alpha/^{\circ}$	90	90	90	93.064(8)
β/°	90	92.836(9)	108.906(9)	106.687(11)
γ/°	90	90	90	104.934(10)
Volume/Å ³	1211.33(7)	667.69(12)	1206.62(17)	930.1(2)
Ζ	4	2	4	4
$\rho_{calc}g/cm^3$	1.290	1.320	1.185	1.351
µ/mm ¹	0.619	0.680	0.563	0.744
F(000)	496.0	280.0	464.0	400.0
Crystal size/mm ³	$0.24\times0.18\times0.1$	$\begin{array}{c} 0.27\times0.1\times\\ 0.06\end{array}$	$\begin{array}{c} 0.28\times 0.19\times \\ 0.16\end{array}$	$\begin{array}{c} 0.12\times 0.08\times \\ 0.06\end{array}$
Radiation	CuKα ($λ = 1.54184$)	CuKα (λ = 1.54184)	$CuK\alpha (\lambda = 1.54184)$	CuKα (λ = 1.54184)
2Θ range for data collection/°	9.11 to 142.246	10.89 to 140.486	10.636 to 140.672	8.32 to 142.388
Index ranges	$-12 \le h \le 13, -15 \le k \le 23, -6 \le l \le 6$	$-9 \le h \le 9, -5 \le k \le 6, -17 \le l \le 14$	$\begin{array}{c} \text{-15} \leq h \leq \text{15}, \text{-4} \leq \\ k \leq 6, \text{-21} \leq l \leq \\ 20 \end{array}$	$-10 \le h \le 8, -11 \le k \le 13, -13 \le 1 \le 11$
Reflections collected	3555	1972	3667	5011
Independent reflections	2053 [$R_{int} = 0.0254$, $R_{sigma} = 0.0382$]	$1586 [R_{int} = 0.0309, R_{sigma} = 0.0578]$	$2234 [R_{int} = 0.0350, R_{sigma} = 0.0433]$	$\begin{array}{l} 3462 \ [R_{int} = \\ 0.0266, \ R_{sigma} = \\ 0.0545] \end{array}$
Data/restraints/parameters	2053/1/163	1586/1/183	2234/0/146	3462/0/255
Goodness-of-fit on F ²	1.069	1.019	1.024	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373, wR_2 = 0.0855$	$R_1 = 0.0464,$ w $R_2 = 0.1051$	$R_1 = 0.0469,$ w $R_2 = 0.1150$	$R_1 = 0.0451,$ w $R_2 = 0.1051$
Final R indexes [all data]	$R_1 = 0.0418, WR_2 = 0.0892$	$R_1 = 0.0617,$ w $R_2 = 0.1164$	$R_1 = 0.0658,$ w $R_2 = 0.1336$	$R_1 = 0.0688,$ w $R_2 = 0.1216$
Largest diff. peak/hole / e Å ⁻³	0.10/-0.17	0.19/-0.19	0.14/-0.19	0.18/-0.24

Additional figures of crystal structures

Figure S1. The structure of L¹. Colour code C (black), H (light pink), N (light blue).

Figure S2. The structure of L^{6} ·2H₂O. Colour code C (black), H (light pink), N (light blue), O (red).

Figure S3. The structure of L⁷. Colour code C (black), H (light pink), N (light blue).

Figure S4. The structure of triazole 18aa. Colour code C (black), H (light pink), N (light blue).

Figure S5. The structure of triazole 18ab. Colour code C (black), H (light pink), N (light blue), O (red).

Figure S6. The structure of triazole 18ac. Colour code C (black), H (light pink), N (light blue).

Figure S7 The structure of triazole 18ad. Colour code C (black), H (light pink), N (light blue), O (red).

Characterization data for ligands L⁵ - L⁷

Figure S8. ¹H NMR spectrum of L⁵.

Figure S9. ¹³C NMR spectrum of L⁵.

Figure S10. HRMS spectrum of L⁵.

Figure S11. IR spectrum of L⁵.

Figure S12. ¹H NMR spectrum of L⁶.

Figure S13. ¹³C NMR spectrum of L⁶.

Figure S14. HRMS spectrum of L⁶.

Figure S15. IR spectrum of L⁶.

Figure S16. ¹H NMR spectrum of L⁷.

Figure S17. 13 C NMR spectrum of L^7 .

Figure S18. HRMS spectrum of L⁷.

Characterization data of the Cu compounds

Figure S19. IR spectrum of 1.

Figure S20. IR spectrum of 2.

Figure S21. IR spectrum of 3.

Figure S22. IR spectrum of 4.

Figure S23. IR spectrum of 5.

Figure S24. ESI-MS data for compound 1 in methanol. Main fragments: 403.07 m/z $[Cu(L^4)]^+$, 552.02 m/z $[Cu(L^4)(CF_3SO_3)]^+$, 614.96 m/z $[Cu_2(L^4)(CF_3SO_3)]^+$, 679.28 m/z $[Cu_3(L^4)(CF_3SO_3)]^+$, 743.22 m/z $[Cu(L^4)_2]^+$, 892.17 m/z $[Cu(L^4)_2(CF_3SO_3)]^+$, 1040.12 m/z $[Cu(L^4)_2(CF_3SO_3)_2]^+$, 1106.07 m/z $[Cu_2(L^4)_2(CF_3SO_3)_2]^+$, 1232.35 m/z $[Cu(L^4)_3(CF_3SO_3)]^+$, 1254.99 m/z $[Cu_2(L^4)_2(CF_3SO_3)_3]^+$, 1595.16 m/z $[Cu_2(L^4)_3(CF_3SO_3)_3]^+$, 1956.02 m/z $[Cu_4(L^4)_5]^+$.

Figure S25. ESI-MS data for compound 2 in methanol. Main fragments: $339.16 \text{ m/z} [(L^5)+H]^+$, 401.08m/z [Cu(L⁵)]⁺, 437.05 m/z [Cu(L⁵)(H₂O)₂]⁺, 464.03 m/z [Cu₂(L⁵)]⁺, 500.08 m/z [Cu₂(L⁵)(H₂O)₂]⁺, 550.03 $[Cu(L^5)(CF_3SO_3)]^+$, 612.96 $[Cu_2(L^1)(CF_3SO_3)]^+,$ 734.57 m/z m/z m/z $[Cu(L^5)(CF_3SO_3)_2(H_2O)_2]^+$, 739.25 m/z $[Cu(L^5)_2]^+$, 888.19 m/z $[Cu(L^1)_2(CF_3SO_3)]^1$, 953.11 m/z $[Cu_{2}(L^{1})_{2}(CF_{3}SO_{3})]^{+}, 1007.08 m/z [Cu_{2}(L^{1})_{2}(CF_{3}SO_{3})(H_{2}O)_{3}]^{+}, 1037.14 m/z [Cu(L^{1})_{2}(CF_{3}SO_{3})_{2}]^{+}, 1007.08 m/z [Cu(L^{1})_{2}(CF_{3}SO_{3})(H_{2}O)_{3}]^{+}, 1007.08 m/z [Cu(L^{1})_{2}(CF_{3}O_{3}O)_{3}]^{+}, 1007.08 m/z [Cu(L^{1})_{2}(CF_{3}O_{3}O)_{3}]^{+}, 1007.08 m/z [Cu(L^{1})_{3}(CF_{3}O_{3}O)_{3}]^{+}, 1007.08 m/z [Cu(L^{1})_{3}(CF_{3}O_{3}O)_{3}]^{+}, 1007.08 m/z [Cu(L^{1})_{3}(CF_{3}O)$ 1120.10 m/z $[Cu_2(L^5)_2(CF_3SO_3)_2(H_2O)]^+$, 1137.03 m/z $[Cu_2(L^5)_2(CF_3SO_3)_2(H_2O)_2]^+$, 1245.19 m/z $[Cu(L^5)_3(CF_3SO_3)_2(H_2O)]^+$, 1350.00 $[Cu_3(L^5)_2(CF_3SO_3)_3(H_2O)_2]^+$, 1475.21 m/z m/z $[Cu_2(L^5)_3(CF_3SO_3)_2(H_2O)_2]^+$, 1813.32 m/z $[Cu_2(L^5)_4(CF_3SO_3)_2(H_2O)_2]^+$.

Figure S26. ESI-MS data for compound **3** in methanol. Main fragments: 239.13 m/z $[(L^6)+H]^+$, 301.05 m/z $[Cu(L^6)]^+$, 360.06 m/z $[Cu(L^6)_2(CF_3SO_3)(MeOH)]^{2+}$, 450.00 m/z $[Cu(L^6)(CF_3SO_3)]^+$, 477.26 m/z $[(L^6)_2+H]^+$, 539.18 m/z $[Cu(L^6)_2]^+$, 598.18 m/z $[Cu(L^6)(CF_3SO_3)_2]^+$, 627.22 m/z $[(L^6)_2(CF_3SO_3)]^+$, 688.14 m/z $[Cu(L^6)_2(CF_3SO_3)]^+$, 715.36 m/z $[(L^6)_3+H]^+$, 737.36 m/z $[(L^6)_3+Na]$, 753.07 m/z $[Cu_2(L^6)_2(CF_3SO_3)]^+$, 777.39 m/z $[Cu(L^6)_3]^+$, 808.20 m/z $[Cu(L^6)_3(MeOH)]^+$, 838.09 m/z

 $[Cu(L^{6})_{2}(CF_{3}SO_{3})_{2}]^{+}, 902.00 \text{ m/z} [Cu_{2}(L^{6})_{2}(CF_{3}SO_{3})_{2}]^{+}, 926.27 \text{ m/z} [Cu(L^{6})_{3}(CF_{3}SO_{3})]^{+}, 1018.22 \text{ m/z} \\ [Cu(L^{6})_{2}(CF_{3}SO_{3})_{3}(MeOH)]^{+}, 1076.23 \text{ m/z} [Cu(L^{6})_{3}(CF_{3}SO_{3})_{2}]^{+}, 1164.40 \text{ m/z} [(L^{6})_{3}(CF_{3}SO_{3})_{3}]^{+}, \\ 1224.78 \text{ m/z} [Cu(L^{6})_{3}(CF_{3}SO_{3})_{3}]^{+}, 1289.12 \text{ m/z} [Cu_{2}(L^{6})_{3}(CF_{3}SO_{3})_{3}]^{+}, 1352.34 \text{ m/z} \\ [Cu_{3}(L^{6})_{3}(CF_{3}SO_{3})_{3}]^{+}, 1445.63 \text{ m/z} [Cu_{3}(L^{6})_{4}(CF_{3}SO_{3})_{2}]^{+}, 1527.24 \text{ m/z} [Cu_{2}(L^{6})_{4}(CF_{3}SO_{3})_{3}]^{+}, 1589.32 \\ \text{m/z} [Cu_{3}(L^{6})_{4}(CF_{3}SO_{3})_{3}]^{+}.$

Figure S27. ESI-MS data for compound **4** in methanol. Main fragments: Main fragments: 239.13 m/z $[(L^6)+H]^+$, 301.05 m/z $[Cu(L^6)]^+$, 360.06 m/z $[Cu(L^6)_2(CF_3SO_3)(MeOH)]^{2+}$, 450.00 m/z $[Cu(L^6)(CF_3SO_3)]^+$, 539.17 m/z $[Cu(L^6)_2]^+$, 598.18 m/z $[Cu(L^6)(CF_3SO_3)_2]^+$, 627.21 m/z $[(L^6)_2(CF_3SO_3)]^+$, 688.12 m/z $[Cu(L^6)_2(CF_3SO_3)]^+$, 838.09 m/z $[Cu(L^6)_2(CF_3SO_3)_2]^+$, 871.07 m/z $[Cu(L^6)_2(CF_3SO_3)_2(MeOH)]^+$, 902.00 m/z $[Cu_2(L^6)_2(CF_3SO_3)_2]^+$, 925.04 m/z $[Cu(L^6)_3(CF_3SO_3)]^+$, 961.01 m/z $[Cu_3(L^6)(CF_3SO_3)_2]^+$, 986.04 m/z $[Cu(L^6)_2(CF_3SO_3)_3]^+$, 1050.95 m/z $[Cu_2(L^6)_2(CF_3SO_3)_3]^+$, 1199.12 m/z $[Cu_3(L^6)_3(CF_3SO_3)_2]^+$.

Figure S28. ESI-MS data for compound **5** in methanol. Main fragments: 403.07 m/z [Cu(L¹)]⁺, 592.91 m/z [Cu(L¹)₂(CF₃SO₃)₃]²⁺, 743.22 m/z [Cu(L¹)₂]⁺, 957.11 m/z [Cu₂(L¹)₂(CF₃SO₃)]⁺, 1297.26 m/z [Cu₂(L¹)₃(CF₃SO₃)]⁺.

TGA Analysis. Compound 1 undergoes an initial mass loss (4.68%) in the 100-125°C range that is attributed to the loss of any remaining acetonitrile solvent with good agreement (theoretical value of 5.01%). The second mass loss (86.28%) occurs at approximately 285°C as the existing core begins to decompose to the resulting oxide (theor.: 84.31%). Compound 2 completely retains its stability up to the region of 260°C. At that point, a mass loss of 28.77% occurs gradually due to the removal of the triflate anions, with excellent agreement to the theoretical value (28.70%). The remaining polymeric core loses its stability at approximately 375°C and is subjected to gradual decomposition to CuO. Once again, the found (63.93%) and theoretical (63.64%) values for this mass loss are in very good agreement. In the case of compound 3, there is an immediate mass loss (5.997%) which concludes at 163°C and is owed to the loss of the coordinated acetonitrile molecule with satisfactory agreement (theoretical: 4.02%). The left residue remains stable until approximately 300°C before it begins decomposition. The TGA analysis of compound 4 is in agreement with the elemental analysis measurements which suggest that the acetone molecules in the lattice are removed under room

temperature. As such, the first mass loss in the range of 85-100°C is attributed to the removal of the coordinated water solvent from the framework. The remaining core is stable until it begins decomposing in the region of 300-325°C to the eventual oxide residue. The total mass loss for these processes (92.84%) is in very good agreement to the theoretical value (90.71%). Finally, in compound **5** there is a continuous mass loss which occurs immediately, until approximately 217°C. This corresponds to the loss of the remaining four acetone solvent molecules that are present in the lattice (found: 9.54%, theoretical: 9.50%). An immediate second mass loss occurs after this, as the remaining framework is decomposed.

Figure S29. TGA graph for compound 1.

Figure S30. TGA graph for compound 2.

Figure S31. TGA graph for compound 3.

Figure S32. TGA graph for compound 4.

Figure S33. TGA graph for compound 5.

Figure S34. ESI-MS data for the *in situ* generated catalyst from $Cu(OTf)_2 \cdot H_2O$ and L^7 in methanol. Main fragments: 304.05 m/z $[Cu(L^7)(MeOH)]^{+1}$, 481.12 m/z $[Cu(L^7)_2]^{1+}$, 630.08 m/z $[Cu(L^7)_2(CF_3SO_3)]^{+1}$, 839.18 m/z $[Cu(L^7)_3(CF_3SO_3)]^{+1}$, 1048.27 m/z $[Cu(L^7)_4(CF_3SO_3)]^{+1}$, 1202.01 m/z $[Cu_2(L^7)_3(CF_3SO_3)_3]^{+1}$, 1411.12 m/z $[Cu_2(L^7)_4(CF_3SO_3)_3]^{+1}$.

Complex	$E_{c}(V)$	$I_c(\mu A)$	E _a (V)	$I_a(\mu A)$	ΔE (V)	E _{1/2} (V)	E ⁰ (V)	I _a /I _k	Solvent	
	0.345	-7.1	0.464	19.6						
Compound 12	0.0507	-16.8	0.182	72.1						
	-0.215	-24.6	0.162	/3.1						
Compound 10	0.429	-6.91	0.556	8.45	0.127	0.493	0.702	1.2	DME	
Compound 2	0.409	-13.5	0.528	16.5	0.119	0.469	0.678	1.2	DNIF	
	0.371	-8.75	0.529	16.5						
Cu(NO ₃) ₂	-0.0137	-14.9	0.182	0.182	32.6	22.6				
	-0.243	-15.1			0.162	52.0				
	0.224	-4.73	0.436	9.92						
Compound 12	0.0185	-12.8	0.133	27.4						
	-0.392	-15.1	0.07	35.9						
Compound 10	0.22	-3.07	0.45	3.31	0.23	0.335	0.544	1.1	DMSO	
Compound 2	0.22	-11.8	0.443	12.1	0.223	0.332	0.541	1.0	DMSU	
Cu(NO ₃) ₂	0.226	-4.48	0.44	9.55						
	0.0251	-15.5	0.158	32.1						
	-0.321	-24	0.081	47.2						

Table S4. The electrochemical data of the Cu(II) complexes 2, 10, 12 (Parameters of the voltammetricmeasurements: glassy carbon electrode, DMF or DMSO, 0.1 M TBAP, 100 mV/s).

Figure S35. (left) Experimental (blue traces) and simulated (green traces) X-band EPR spectra for **2** at 9.496899 GHz and 5 K. (right) Overlay of EPR spectra in solid state (blue traces) and in methanolic solution (red traces) for **2** at 9.496899 GHz and 5 K.

Figure S36. (left) Experimental (blue traces) and simulated (green traces) X-band EPR spectra for **10** at 9.383448 GHz and 5 K. (right) Overlay of EPR spectra in solid state (blue traces) and in ethanolic solution (red traces) for **10** at 9.383448 GHz and 5 K.

Figure S37. (left) Experimental (blue traces) and simulated (green traces) X-band EPR spectra for **12** at 9.303858 GHz and 5 K. (right) Overlay of EPR spectra in solid state (blue traces) and in methanolic solution (red traces) for **12** at 9.303858 GHz and 5 K.

Figure S38. (left) Overlay of EPR spectra of aliquots from the catalytic reaction (**10** used as catalyst) during the synthesis of triazole **18aa** in selected times. (right) Overlay of EPR spectra of aliquots from the catalytic reaction (**10** used as catalyst), with 15% Sodium-L-ascorbate added, during the synthesis of triazole **18aa** in selected times.

Evaluation of catalytic conditions

1	CI + NaN ₃ 5a 16	+ =	Cu salt EtOH, 78°C 24 hrs	18aa	
Entry	Catalyst	Conversion (%) ^a	Yield (%) ^b	Regioselectivity	TON/TOF
					(hr ⁻¹)
1	Cu ^I Cl	100	72	99:1	14.4/0.6
2	Cu ^I (BF ₄)(MeCN) ₄	93	80	99:1	18/0.75
3	Cu ^I (OTf)(MeCN) ₄	100	78	99:1	15.6/0.65
4	$Cu^{II}Cl_2$	79	35	99:1	7/0.29
5	Cu ^{II} Br ₂	77	32	98:2	6.4/0.27
6	Cu ^{II} (OTf) ₂ ·H ₂ O	99	78	99:1	15.6/0.65
7	$Cu^{II}(OAc)_2 \cdot H_2O$	92	40	99:1	8/0.33
8	$Cu^{II}(ClO_4)_2 \cdot 6H_2O$	99	76	97:3	15.2/0.63
9	$Cu^{II}(BF_4)_2 \cdot 6H_2O$	99	71	96:4	14.2/0.59
10	$Cu^{II}(NO_3)_2 \cdot 2.5H_2O$	93	62	96:4	12.4/0.52

Table S5. Evaluation of various Cu^I and Cu^{II} salts in the synthesis of triazole 18aa.

Reaction conditions: benzyl chloride (0.5 mmol), sodium azide (0.5 mmol), phenylacetylene (0.5 mmol), catalyst (5% mol), EtOH (3 mL), heated at 78°C for 24 h. [a]: based on benzyl chloride, [b]: calculated from the crude mixture by ¹HNMR. The reported¹ ¹HNMR peaks of the 1,5-analogue were employed to determine regioselectivity.

Characterization data of products (¹H, ¹³CNMR and HRMS spectra)

1-benzyl-4-phenyl-1H-1,2,3-triazole (18aa)²

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.7 Hz, 2H), 7.68 (s, 1H), 7.42 – 7.30 (m, 8H), 5.59 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 134.46, 129.18, 128.86, 128.83, 128.32, 128.09, 125.75, 54.39. HRMS for C₁₅H₁₄N₃ [M + 1]: calc: 236.1182, found: 236.1174.

Figure S39. ¹H NMR spectrum of triazole 18aa.

Figure S40. ¹³C NMR spectrum of triazole 18aa.

Figure S41. HRMS spectrum of triazole 18aa.

1-benzyl-4-(4-methoxy)phenyl-1H-1,2,3-triazole (18ab)²

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.58 (s, 1H), 7.40 – 7.34 (m, 3H), 7.30 (d, *J* = 7.0 Hz, 2H), 6.92 (d, *J* = 7.7 Hz, 2H), 5.56 (s, 2H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.56, 148.05, 134.74, 129.12, 128.73, 128.03, 126.97, 123.25, 118.68, 114.17, 55.30, 54.20. HRMS for C₁₆H₁₆N₃O [M + 1]: calc: 266.1288, found: 266.1279.

Figure S42. ¹H NMR spectrum of triazole 18ab.

Figure S43. ¹³C NMR spectrum of triazole 18ab.

Figure S44. HRMS spectrum of triazole 18ab.

1-benzyl-4-butyl-1H-1,2,3-triazole (18ac)²

Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.28 (m, 3H), 7.23 – 7.20 (m, 2H), 7.19 (s, 1H), 5.44 (s, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 1.60 (p, *J* = 7.7 Hz, 2H), 1.33 (q, *J* = 7.5 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.83, 135.03, 128.97, 128.51, 127.89, 120.56, 53.88, 31.48, 25.37, 22.28, 13.77. HRMS for C₁₃H₁₈N₃ [M + 1]: calc: 216.1495, found: 216.1494.

Figure S45. ¹H NMR spectrum of triazole 18ac.

Figure S46. ¹³C NMR spectrum of triazole 18ac.

Figure S47. HRMS spectrum of triazole 18ac.

(1-benzyl-1H-1,2,3-triazol-4-yl)methanol (18ad)²

Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.48 (s, 1H), 7.38 – 7.30 (m, 3H), 7.29 – 7.22 (m, 2H), 5.48 (s, 2H), 4.72 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 148.41, 134.47, 129.08, 128.75, 128.10, 122.15, 56.16, 54.20. HRMS for C₁₀H₁₂N₃O [M + 1]: calc: 190.0975, found: 190.0968.

Figure S48. ¹H NMR spectrum of triazole 18ad.

Figure S49. ¹³C NMR spectrum of triazole 18ad.

Figure S50. HRMS spectrum of triazole 18ad.

2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethanol (18ae)²

Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.27 – 7.23 (m, 2H), 5.48 (s, 2H), 3.91 (s, 2H), 2.90 (t, *J* = 6.1, 2.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 145.99, 134.66, 129.07, 128.70, 128.05, 121.51, 61.51, 54.09, 28.70. HRMS for C₁₁H₁₄N₃O [M + 1]: calc: 204.1131, found: 204.1131.

Figure S51. ¹H NMR spectrum of triazole 18ae.

Figure S52. ¹³C NMR spectrum of triazole 18ae.

Figure S53. HRMS spectrum of triazole 18ae.

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (18af)

¹H NMR (600 MHz, CDCl₃) δ 7.97 (s, 1H), 7.31 – 7.27 (m, 3H), 7.23 – 7.17 (m, 2H), 5.58 (s, 2H), 4.40 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). The found values match well to those in the literature.²

1-butyl-4-phenyl-1H-1,2,3-triazole (18ba)³

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 2H), 7.76 (s, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 4.41 (t, *J* = 7.2 Hz, 2H), 1.99 – 1.89 (m, 2H), 1.45 – 1.34 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.58, 130.66, 128.81, 128.08, 125.67, 119.39, 50.16, 32.31, 19.72, 13.48. HRMS for C₁₂H₁₆N₃ [M + 1]: calc: 202.1339, found: 202.1341.

Figure S54. ¹H NMR spectrum of triazole 18ba.

Figure S55. ¹³C NMR spectrum of triazole 18ba.

Figure S56. HRMS spectrum of triazole 18ba.

1-butyl-4-(4-methoxy-phenyl)-1H-1,2,3-triazole (18bb)³

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.66 (s, 1H), 6.96 (d, J = 8.3 Hz, 2H), 4.40 (t, J = 7.3 Hz, 2H), 3.85 (s, 3H), 1.97 – 1.90 (m, 2H), 1.44 – 1.36 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.56, 150.61, 133.56, 126.99, 118.61, 114.23, 77.20, 76.99, 76.77, 55.32, 50.12, 32.30, 19.72, 13.46. HRMS for C₁₃H₁₈N₃O [M + 1]: calc: 232.1444, found: 232.1447.

Figure S57. ¹H NMR spectrum of triazole 18bb.

Figure S58. ¹³C NMR spectrum of triazole 18bb.

Figure S59. HRMS spectrum of triazole 18bb.

1,4-dibutyl-1H-1,2,3-triazole (18bc)⁴

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (s, 1H), 4.32 (t, *J* = 7.2 Hz, 2H), 2.71 (t, *J* = 7.7 Hz, 2H), 1.91 – 1.83 (m, 2H), 1.69 – 1.61 (m, 2H), 1.43 – 1.30 (m, 4H), 1.00 – 0.89 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 148.32, 120.41, 49.91, 32.31, 31.58, 25.35, 22.31, 19.72, 13.82, 13.47. HRMS for C₁₀H₂₀N₃ [M + 1]: calc: 182.1652, found: 182.1652.

Figure S60. ¹H NMR spectrum of triazole 18bc.

Figure S61. ¹³C NMR spectrum of triazole 18bc.

Figure S62. HRMS spectrum of triazole 18bc.

(1-Butyl-1H-1,2,3-triazol-4-yl)methanol (18bd)⁵

Light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (s, 1H), 4.80 (s, 2H), 4.36 (t, J = 7.2 Hz, 2H), 1.89 (p, J = 7.5 Hz, 2H), 1.42 – 1.26 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.62, 121.66, 56.45, 50.14, 32.21, 19.67, 13.41. HRMS for C₇H₁₄N₃O [M + 1]: calc: 156.1131, found: 156.1134

Figure S63. ¹H NMR spectrum of triazole 18bd.

Figure S64. ¹³C NMR spectrum of triazole 18bd.

Figure S65. HRMS spectrum of triazole 18bd.

Light yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (s, 1H), 4.32 (t, *J* = 7.2 Hz, 2H), 3.96 (s, 2H), 2.93 (t, *J* = 5.7 Hz, 2H), 1.87 (p, *J* = 7.4 Hz, 2H), 1.38 – 1.24 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.06, 121.61, 61.64, 50.04, 32.21, 28.61, 19.70, 13.43. HRMS for C₇H₁₄N₃O [M + 1]: calc: 170.1288, found: 170.1288.

Figure S66. ¹H NMR spectrum of triazole 18be.

Figure S67. ¹³C NMR spectrum of triazole 18be.

Figure S68. HRMS spectrum of triazole 18be.

1,4-Diphenyl-1H-[1,2,3]-triazole (18ca)⁶

Yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 7.92 (d, *J* = 7.4 Hz, 2H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.49 – 7.43 (m, 3H), 7.40 – 7.34 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.39, 137.06, 130.23, 129.76, 128.90, 128.75, 128.40, 125.84, 120.51, 117.57, 77.21, 77.00, 76.79. HRMS for C₁₄H₁₂N₃ [M + 1]: calc: 222.1026, found: 222.1026.

Figure S69. ¹H NMR spectrum of triazole 18ca.

Figure S70. ¹³C NMR spectrum of triazole 18ca.

Figure S71. HRMS spectrum of triazole 18ca.

(1-phenyl-1H-1,2,3-triazol-4-yl)methanol (18cc)⁷

Light yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.53 (t, J = 7.8 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 4.91 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 148.21, 135.58, 129.78, 128.85, 120.61, 119.94, 56.71. HRMS for C₉H₉N₃ONa [M + Na]: calc: 198.0638, found: 198.0631.

Figure S72. ¹H NMR spectrum of triazole 18cc.

Figure S73. ¹³C NMR spectrum of triazole 18cc.

Figure S74. HRMS spectrum of triazole 18cc.

2-(1-phenyl-1H-1,2,3-triazol-4-yl)ethanol (18cd)⁸

Light yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 4.03 (t, *J* = 5.9 Hz, 2H), 3.21 (t, *J* = 6.3 Hz, 1H), 3.06 (t, *J* = 5.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 146.20, 135.61, 129.72, 128.67, 120.49, 119.84, 77.20, 76.99, 76.78, 61.62, 28.69. HRMS for C₁₀H₁₁N₃ONa [M + Na]: calc: 212.0794, found: 212.0786.

Figure S75. ¹H NMR spectrum of triazole 18cd.

Figure S76. ¹³C NMR spectrum of triazole 18cd.

Figure S77. HRMS spectrum of triazole 18cd.

References

- Y. C. Wang, Y. Y. Xie, H. E. Qu, H. S. Wang, Y. M. Pan and F. P. Huang, *J. Org. Chem.*, 2014, 79, 4463–4469.
- 2 A. Taher, D. Nandi, R. U. Islam, M. Choudhary and K. Mallick, *RSC Adv.*, 2015, **5**, 47275–47283.
- 3 Y. Wang, J. Liu and C. Xia, *Adv. Synth. Catal.*, 2011, **353**, 1534–1542.
- J. Shah, S. S. Khan, H. Blumenthal and J. Liebscher, *Synthesis (Stuttg).*, 2009, 2009, 3975–3982.
- 5 K. Chanda, S. Rej and M. H. Huang, *Chem. A Eur. J.*, 2013, **19**, 16036–16043.
- 6 S. Kaur, V. Bhalla and M. Kumar, *Chem. Commun.*, 2015, **51**, 526–529.
- 7 H. Hagiwara and S. Okada, *Chem. Commun.*, 2016, **52**, 815–818.
- Y. Jiang, X. He, W. Zhang, X. Li, N. Guo, Y. Zhao, G. Xu and W. Li, *RSC Adv.*, 2015, 5, 73340–73345.