# Supporting Information:

# The Modular Synthesis of Rare Earth-Transition Metal Heterobimetallic Complexes Utilizing a Redox-Active Ligand

James R. Hickson,<sup>a,b</sup> Samuel J. Horsewill,<sup>a</sup> Christopher Bamforth,<sup>a</sup> Jake McGuire,<sup>a</sup> Stephen Sproules,<sup>a</sup> Claire Wilson<sup>a</sup> and Joy H. Farnaby<sup>a\*</sup>

<sup>a</sup> School of Chemistry, WestCHEM, University of Glasgow, Glasgow, UK.

<sup>b</sup> Department of Chemistry, Imperial College London, South Kensington, London, UK.

### Contents

| Additional Synthetic Details:                                | 2  |
|--------------------------------------------------------------|----|
| Spectroscopic data for Complexes 1-6, NMR and ATR-IR:        | 5  |
| Additional spectroscopic data for Complexes 1-4, UV-vis-NIR: | 9  |
| Magnetic Moment Data for Complexes 2, 3, 5 and 6:            | 10 |
| Additional Crystallographic Data:                            | 11 |
| EPR data for 2:                                              | 13 |
| Computational details:                                       | 14 |
| References                                                   | 18 |

### **Additional Synthetic Details:**

#### S1. Synthesis of 1,10-Phenanthroline-5,6-Dione (pd)

A modified version of the synthesis reported by Yamada and co-workers was followed.<sup>1</sup>

To frozen 97% H<sub>2</sub>SO<sub>4</sub> (100 mL, 1.88 mol), 1,10-phenanthroline (10 g, 47.6 mmol) and KBr (20 g, 168 mmol) were added. The mixture was allowed to warm to room temperature over 30 m, giving an orange paste. A reflux condenser was fitted, and 65% HNO<sub>3</sub> (50 mL, 1.20 mol) was added dropwise over 30 m. The mixture was heated at 130 °C for 16 h, after which evolution of bromine was complete. The mixture was poured over ice, and NaHCO<sub>3</sub> (37 g) was added in small portions with stirring until pH 7 was reached. The product was filtered, extracted with CH<sub>2</sub>Cl<sub>2</sub> (5 x 20 mL), dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The yellow product was washed with MeOH (3 x 10 mL) and dried *in vacuo*, yielding 1,10-phenanthroline-5,6-dione (8.1 g, 38.5 mmol, 81% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.69 (2H, dd, *J* = 7.9, 4.7 Hz, C<sup>3.8</sup>-<u>H</u>) 8.50 (2H, dd, *J* = 7.9, 1.8 Hz, C<sup>4.7</sup>-<u>H</u>) 9.12 (2H, dd, *J* = 4.7, 1.8 Hz, C<sup>2.9</sup>-<u>H</u>) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  178.7, 156.41, 137.31, 128.06, 125.62 ppm. IR (ATR): 3351(w), 3075(w), 3021(w), 1678(s, uCO), 1558 (s), 1416 (m), 1272 (s), 1201 (m) cm<sup>-1</sup>.  $\lambda_{max}$  (MeCN)/nm ( $\epsilon$ /M<sup>-1</sup> cm<sup>-1</sup>): 243 (4 510), 256 (3 748).

#### S2. Synthesis of Y(OTf)<sub>3</sub>

A modified version of the synthesis reported by Fukuzumi and co-workers was followed.<sup>2</sup>  $Y_2O_3$  (4.51 g, 20 mmol) was added to a solution of 50% v:v triflic acid in water (21 mL, 120.1 mmol). The resulting suspension was heated at reflux for 16 h, until  $Y_2O_3$  was completely consumed. The solution was reduced in volume by half and the resulting crystals collected by suction filtration.  $[Y(OTf)_3(H_2O)_x]$  was washed with hexane until white (4 x 5 mL, off-white colouration is an indicator of remaining triflic acid).  $Y(OTf)_3(H_2O)_x$  was ground with a pestle and mortar, and dehydrated *in vacuo* for 48 h at 220 °C to give  $Y(OTf)_3$  as a white powder (9.10 g, 16.9 mmol, 85% yield). Complete dehydration was confirmed by <sup>1</sup>H NMR and IR spectroscopy. <sup>19</sup>F{<sup>1</sup>H} NMR ( $CD_3CN$ ):  $\delta$  -79.80 (br, OTf-C**F**<sub>3</sub>) ppm. IR(ATR): 3347 (s), 1659 (m), 1637 (m), 1377 (w), 1248 (s), 1198 (s), 1188 (s), 1031 (s) cm<sup>-1</sup>.

#### S3. Synthesis of Gd(OTf)<sub>3</sub>

Gd<sub>2</sub>O<sub>3</sub> (7.25 g, 20 mmol) was added to a solution of triflic acid (12 g in 10 mL H<sub>2</sub>O, 144 mmol). The suspension was heated at reflux for 17 h until Gd<sub>2</sub>O<sub>3</sub> was mostly consumed. The mixture was filtered and washed with H<sub>2</sub>O, and the washings were reduced in volume by vacuum filtration to give a white precipitate. [Gd(Otf)<sub>3</sub>(H<sub>2</sub>O)<sub>x</sub>] was washed with hexane (3 x 5 mL), ground with a pestle and mortar and dehydrated *in vacuo* for 24 h at 200 °C to give Gd(OTf)<sub>3</sub> as a white powder (8.57 g, 14.2 mmol, 71% yield). Dehydration was confirmed by <sup>1</sup>H NMR and IR spectroscopy. <sup>19</sup>F{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  -80.57 (OTf-C**F**<sub>3</sub>) ppm. IR(ATR): 1637 (w), 1288 (m), 1199 (s), 1041 (s), 628 (s).

#### S4. Synthesis of potassium hexafluoroacetylacetonate [K(hfac)]

To a suspension of KH (0.96 g, 23.9 mmol) in THF (10 mL) at -78 °C, hexafluoroacetylacetone (5.00 g, 23.9 mmol) was added dropwise *via* cannula over 2 min. The reaction was allowed to warm to room temperature and stirred for 30 min. The pale yellow solution was filtered *via* filter cannula and THF removed *in vacuo*. The off-white solids were washed with hexane (3 x 5 mL), giving potassium hexafluoroacetyacetonate (4.85 g, 18.4 mmol, 84% yield). <sup>1</sup>H NMR (*d*<sub>8</sub>-THF): δ 5.54 (4H, s, hfac-CH) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (*d*<sub>8</sub>-THF): δ -77.81 (hfac-CF<sub>3</sub>) ppm.

## Spectroscopic data for Complexes 1-6, NMR and ATR-IR:



Figure S1. <sup>1</sup>H NMR spectrum of 1, recorded in  $C_6D_6$  at 298 K



Figure S2. ATR-IR spectrum of 1, recorded at 298 K



Figure S3. ATR-IR spectrum of 2, recorded at 298 K



Figure S4. ATR-IR spectrum of 3, recorded at 298 K



Figure S5. ATR-IR spectrum of 4, recorded at 298 K



Figure S6. ATR-IR spectra of 5, recorded at 298 K



Figure S7. ATR-IR spectrum of 6, recorded at 298 K





Figure S8. Electronic spectra of 100  $\mu$ M solutions of 1 and 2, recorded in MeCN at 298 K

| Complex                                                                                   | Concentration (M) | Average shift (Hz) | $\mu_{eff}$ ( $\mu_{B}$ ) | μ <sub>so</sub> (μ <sub>в</sub> ) |
|-------------------------------------------------------------------------------------------|-------------------|--------------------|---------------------------|-----------------------------------|
| [Y(hfac) <sub>3</sub> ( <i>N,N'-O,O'</i> -pd)V(Cp) <sub>2</sub> ] <b>3</b>                | 0.0302            | 35.1               | 1.71                      |                                   |
|                                                                                           | 0.0285            | 35.0               | 1.74                      | 1.73                              |
|                                                                                           | 0.0317            | 38.2               | 1.73                      |                                   |
|                                                                                           | 0.0218            | 25.2               | 1.75                      |                                   |
| [Y(hfac) <sub>3</sub> ( <i>N,N'-O,O</i> '-pd)V(Cp <sup>t</sup> ) <sub>2</sub> ] <b>5</b>  | 0.0308            | 33.3               | 1.72                      | 1.73                              |
|                                                                                           | 0.0285            | 32.1               | 1.74                      |                                   |
| [Gd(hfac)₃( <i>N,N′</i> -pd)].Tol <b>2</b>                                                | 0.0315            | 1247.0             | 7.56                      |                                   |
|                                                                                           | 0.0314            | 1265.3             | 7.62                      | 7.94                              |
|                                                                                           | 0.0204            | 841.0              | 7.71                      |                                   |
| [Gd(hfac) <sub>3</sub> ( <i>N,N'-O,O'</i> -pd)V(Cp <sup>t</sup> ) <sub>2</sub> ] <b>6</b> | 0.0131            | 595.7              | 8.10                      |                                   |
|                                                                                           | 0.0164            | 725.4              | 7.99                      | 8.12                              |
|                                                                                           | 0.0175            | 858.9              | 8.41                      |                                   |

## Magnetic Moment Data for Complexes 2, 3, 5 and 6:

**Table S1.** Corrected magnetic moment data for **2**, **3**, **5** and **6**. Measurements were taken in  $d_8$ -thf at room temperature from crystalline material and magnetic moments calculated according to the Evans Method.<sup>3</sup>

Additional Crystallographic Data:



**Figure S9.** Molecular structure of **1a**. Hydrogen atoms omitted for clarity. Thermal ellipsoids drawn at 50% probability. Selected distances (Å): Y1-N1 2.524(3), Y1-N2 2.520(3), C5-C6 1.535(7), C5-O1 1.224(4), C6-O2 1.220(5).



**Figure S10.** Molecular structure of **1b**, highlighting short contacts between Y1 and O2. Hydrogen atoms omitted for clarity. Structure depicted as wireframe with selected atoms depicted as ball and stick. Selected distance (Å): Y1-O2 3.154.



**Figure S11.** Molecular structure of **2b**. Hydrogen atoms omitted for clarity. Thermal ellipsoids drawn at 50% probability. Selected atoms not refined anisotropically due to disorder. Selected distances (Å): Gd1-N1 2.58(1), Gd1-N2 2.53(2), C5-C6 1.53(3), C5-O1 1.26(3), C6-O2 1.22(3), Gd1-O1 2.84(2).



**Figure S12.** Molecular structure of **5**. Hydrogen atoms and solvent of crystallisation omitted for clarity. Thermal ellipsoids drawn at 50% probability, selected ancillary ligand atoms depicted as ball and stick due to  $CF_3$  disorder. Selected distances (Å): Y1-N1 2.48(1), Y1-N2 2.49(1), C5-C6 1.38(2), C6-O2 1.35(1), C5-O1 1.34(2), V1-O1 1.975(8), V1-O2 1.977(9).

### EPR data for 2:



**Figure S13.** X-band EPR spectrum of **2** recorded in toluene solution at 293 K (experimental conditions: frequency, 9.8623 GHz; power, 0.63 mW; modulation, 0.3 mT). Experimental data are represented by the black line; simulation is depicted by the red trace.

#### **Computational details:**

**Calculations.** The program package ORCA was used for all calculations.<sup>4</sup> The input geometry was generated using ArgusLab, and then optimised via a spin-unrestricted DFT method employing the BP86 functional<sup>5</sup> with acetonitrile as solvent. Split-valence basis sets with one set of polarization functions (def2-SVP) were used for all atoms.<sup>6,7</sup> A scalar relativistic correction was applied using the zeroth-order regular approximation (ZORA) method<sup>8</sup> as implemented by van Wüllen.<sup>9</sup> The RI-J approximation combined with the appropriate Ahlrichs auxiliary basis set was used to speed up the calculations.<sup>10</sup> The conductor like screening model (COSMO) was used for all calculations.<sup>11</sup> The self-consistent field calculations were tightly converged ( $1 \times 10^{-8} E_h$  in energy,  $1 \times 10^{-7} E_h$  in the charge density, and  $1 \times 10^{-7}$  in the maximum element of the DIIS<sup>12</sup> error vector). The geometry was converged with the following convergence criteria: change in energy  $<10^{-5} E_h$ , average force  $<5 \times 10^{-4} E_h$  Bohr<sup>-1</sup>. The geometry search for all complexes was carried out in redundant internal coordinates without imposing geometry constraints.

Electronic property calculations at the optimised geometry were done with the PBEO functional.<sup>14</sup> The scalar relativistically recontracted ZORA-def2-TZVP(-f) were used all atoms and enhanced integration accuracy was used for the metal atoms (SPECIALGRIDINTACC 10).<sup>7,14</sup> Calculations employed the RIJCOSX algorithm to speed the calculation of Hartree–Fock exchange.<sup>15</sup> TD-DFT calculations were carried out as described by Neese and Olbrich.<sup>16</sup> The first 80 states were calculated where the maximum dimension of the expansion space in the Davidson procedure (MAXDIM) was set to 800. The full width at half maximum (FWHM) was set to 4500 cm<sup>-1</sup>. Molecular orbitals and spin density maps were visualised via the programme Molekel.<sup>17</sup>

14

|                   | 3       |       | 5        |
|-------------------|---------|-------|----------|
|                   | Exptl   | Calcd | Exptl    |
| Y–N(1)            | 2.47(2) | 2.550 | 2.48(1)  |
| Y-N(2)            | 2.48(2) | 2.551 | 2.49(1)  |
| V–O(5)            | 1.97(2) | 1.960 | 1.975(8) |
| V–O(6)            | 1.97(2) | 1.960 | 1.977(8) |
| V–C <sub>Cp</sub> | 2.30(2) | 2.362 | 2.33(1)  |
| O(1)–C(5)         | 1.40(2) | 1.335 | 1.34(2)  |
| O(2)–C(6)         | 1.24(2) | 1.336 | 1.35(1)  |
| C(5)–C(6)         | 1.40(2) | 1.391 | 1.38(2)  |

Table S2. Comparison of Experimental and Calculated Bond Distances (Å)

## Table S3Geometry-Optimised Coordinates for 3

| Y | 8.629904  | 11.245466 | 3.083574  |
|---|-----------|-----------|-----------|
| V | 7.648599  | 2.777387  | 2.903399  |
| 0 | 10.431624 | 11.095750 | 4.547946  |
| 0 | 10.564478 | 11.035449 | 1.787439  |
| С | 8.222138  | 7.925015  | 2.292931  |
| 0 | 6.316582  | 10.926984 | 2.957604  |
| С | 8.254291  | 7.887170  | 3.744533  |
| 0 | 7.721048  | 11.993535 | 5.086989  |
| 0 | 7.790458  | 4.278605  | 1.674785  |
| С | 8.061451  | 6.706255  | 1,548506  |
| N | 8.351197  | 9.130671  | 1.672769  |
| N | 8.408891  | 9.060504  | 4.417472  |
| 0 | 7.834292  | 4.214341  | 4.199189  |
| C | 7,935825  | 5.465802  | 2,264083  |
| C | 8.129337  | 6.632082  | 4.434914  |
| C | 7,967180  | 5.429499  | 3.665164  |
| c | 8 453668  | 9 051570  | 5 754681  |
| C | 8.323463  | 9.187446  | 0.337113  |
| C | 8.040668  | 6.792006  | 0.130948  |
| C | 8 175126  | 6 649562  | 5 854666  |
| c | 11 811305 | 11 007512 | 2 006337  |
| C | 11.691642 | 11.064796 | 4.452921  |
| C | 12.681398 | 10.914261 | 0.735350  |
| C | 12.448673 | 11.036376 | 3.262789  |
| С | 8.339843  | 7.861962  | 6.514572  |
| С | 8.170200  | 8.036305  | -0.473825 |
| С | 6.573338  | 12.033419 | 5.617873  |
| С | 5.329480  | 11.089802 | 3.729926  |
| С | 6.566130  | 12.561359 | 7.067906  |
| С | 5.356385  | 11.624436 | 5.036421  |
| С | 12.434599 | 11.033746 | 5.805338  |
| С | 3.974697  | 10.627057 | 3.151139  |
| F | 4.024823  | 9.308431  | 2.876002  |
| F | 3.707666  | 11.283498 | 2.009963  |
| F | 2.953519  | 10.835704 | 4.007990  |
| F | 5.328204  | 12.585224 | 7.602349  |
| F | 7.073185  | 13.801067 | 7.119046  |
| F | 7.336215  | 11.759640 | 7.839033  |
| F | 12.116000 | 12.114047 | 6.535552  |
| F | 13.774843 | 11.003786 | 5.654382  |
| F | 12.067728 | 9.935390  | 6.498239  |
| F | 12.419209 | 11.948853 | -0.081562 |
| F | 14.001407 | 10.918974 | 1.012527  |
| F | 12.397559 | 9.775224  | 0.072257  |
| 0 | 8.037771  | 12.145254 | 1.025055  |
| 0 | 9.236186  | 13.481518 | 3.139926  |

| С | 9.361999  | 14.400356 | 2.280929  |
|---|-----------|-----------|-----------|
| С | 8.334919  | 13.207548 | 0.401812  |
| С | 9.976112  | 15.710310 | 2.821365  |
| С | 8.983223  | 14.343357 | 0.921972  |
| С | 7.882679  | 13.224945 | -1.072595 |
| F | 9.162940  | 16.241137 | 3.752306  |
| F | 11.167258 | 15.463221 | 3.391677  |
| F | 10.156523 | 16.628037 | 1.847932  |
| F | 8.320279  | 12.109981 | -1.699913 |
| F | 6.539702  | 13.239006 | -1.143984 |
| F | 8.353016  | 14.291672 | -1.746039 |
| С | 9.968147  | 2.776577  | 2.498146  |
| С | 9.799740  | 2.350155  | 3.838576  |
| С | 9.341225  | 1.813339  | 1.641884  |
| С | 9.070340  | 1.124316  | 3.831050  |
| С | 8.829323  | 0.770467  | 2.466182  |
| С | 5.930481  | 1.400941  | 1.981194  |
| С | 6.048889  | 1.073194  | 3.368891  |
| С | 5.511446  | 2.758567  | 1.888151  |
| С | 5.753664  | 2.242612  | 4.124971  |
| С | 5.400119  | 3.280176  | 3.204301  |
| Н | 8.582189  | 10.025500 | 6.242140  |
| Н | 8.412360  | 10.186017 | -0.106597 |
| Н | 7.922438  | 5.872951  | -0.454922 |
| Н | 8.079775  | 5.703287  | 6.399970  |
| Н | 13.538067 | 11.009948 | 3.317384  |
| Н | 8.381574  | 7.915256  | 7.608611  |
| Н | 8.154742  | 8.145345  | -1.564440 |
| Н | 4.428854  | 11.715820 | 5.602698  |
| Н | 9.164513  | 15.203109 | 0.275780  |
| Н | 10.421634 | 3.717447  | 2.179401  |
| Н | 10.098395 | 2.908607  | 4.727917  |
| Н | 9.287361  | 1.864957  | 0.551212  |
| Н | 8.779790  | 0.546993  | 4.712284  |
| Н | 8.325660  | -0.132961 | 2.116712  |
| Н | 6.109777  | 0.728544  | 1.138327  |
| Н | 6.338259  | 0.102859  | 3.778061  |
| Н | 5.378162  | 3.325484  | 0.964872  |
| Н | 5.790329  | 2.337747  | 5.212977  |
| Н | 5.158013  | 4.312712  | 3.464921  |
|   |           |           |           |



Figure S14. Geometry optimized structure of 3



Figure S15. Mulliken spin density plot of 3



Figure S16. The ground state SOMO for 3

## References

- 1. Yamada, M., Tanaka, Y., Yoshimoto, Y., Kuroda, S., Shimao, I., *Bull. Chem. Soc. Jpn.* **1992**, *65*, 1006-1011.
- 2. Fukuzumi, S.; Fujii, Y.; Suenobo, T., J. Am. Chem. Soc. **2001**, *123*, 10191.
- 3. Sur, S. K. J. Magn. Reson., **1989**, 82, 169.
- 4. Neese, F. WIREs Comput. Molec. Sci., **2012**, *2*, 73–78.
- (a) A. D. Becke, *Phys. Rev. A*, **1988**, *38*, 3098–3100. (b) J. P. Perdew, *Phys. Rev. B*, **1986**, *33*, 8822–8824.
- 6. R. Ahlrichs and K. May, *Phys. Chem. Chem. Phys.*, **2000**, *2*, 943–945.
- 7. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, **2005**, *7*, 3297–3305.
- 8. (a) E. van Lenthe, J. G. Snijders and E. J. Baerends, *J. Chem. Phys.*, **1996**, *105*, 6505–6516. (b) E. van Lenthe, S. Faas and J. G. Snijders, *Chem. Phys. Lett.*, **2000**, *328*, 107–112. (c) E. van Lenthe, A. van der Avoird and P. E. S. Wormer, *J. Chem. Phys.*, **1998**, *108*, 4783–4796.
- 9. C. van Wüllen, J. Chem. Phys., **1998**, 109, 392–399.
- (a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, **1995**, 242, 652–660.
   (b) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, **1997**, 97, 119–124.
- 11. A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799–805.
- 12. (a) P. Pulay, *Chem. Phys. Lett.*, **1980**, *73*, 393–398. (b) P. Pulay, *J. Comput. Chem.*, **1982**, *3*, 556–560.
- 13. (a) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, **1996**, *77*, 3865–3868. (b)
  C. Adamo and V. Barone, *J. Chem. Phys.*, **1999**, *110*, 6158–6170.
- 14. D. A. Pantazis, X.-Y. Chen, C. R. Landis, and F. Neese, J. Chem. Theory Comput. **2008**, 4, 908–919.
- 15. (a) F. Neese, F. Wennmohs and A. Hansen, J. Chem. Phys., 2009, 130, 114108. (b) R. Izsák and F. Neese, J. Chem. Phys., 2011, 135, 144105.
- 16. F. Neese and G. Olbrich, *Chem. Phys. Lett.*, **2002**, *362*, 170–178.
- 17. *Molekel*, Advanced Interactive 3D-Graphics for Molecular Sciences, Swiss National Supercomputing Centre. https://ugovaretto.github.io/molekel/