ELECTRONIC SUPPLEMENTARY INFORMATION

to

Unusual coordination modes, field-induced slow magnetic relaxation and luminescence properties in the chemistry of lanthanide(III)/4-bromo-2-[(phenylimino)methyl]phenol complexes[†]

Diamantoula Maniaki,^a Ioannis Mylonas-Margaritis,^a Julia Mayans,^b Aikaterini Savvidou,^c Catherine P. Raptopoulou,^c Vlasoula Bekiari,^d Vassilis Psycharis,^{*c} Albert Escuer^{*b} and Spyros P. Perlepes^{*a,e}

^a Department of Chemistry, University of Patras, 26504 Patras, Greece. E-mail: <u>perlepes@patreas.upatras.gr</u>; Tel:+30 2610 996730

^b Departament de Quimica Inorgànica i Orgànica, Secció Inorgànica and Institute de Nanociencia (IN²UB) i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. Email: <u>albert.escuer@qi.ub.es</u>; Tel:+34 93 4039141

^c Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece. E-mail: <u>v.psycharis@inn.demokritos.gr</u>; Tel: +30 210 6503346

^{*d*} Department of Aquaculture and Fisheries Management, Technological Educational Institute of Western Greece, 30200 Messolonghi, Greece

^e Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece

Parameter	1·MeCN	3·MeCN	5·MeCN	7·MeCN	9·MeCN
Formula	$C_{28}H_{25}PrN_6O_{12}Br_2$	$C_{28}H_{25}SmN_6O_{12}Br_2$	$C_{28}H_{25}GdN_6O_{12}Br_2$	$C_{28}H_{25}DyN_6O_{12}Br_2$	$C_{28}H_{25}ErN_6O_{12}Br_2$
Fw	938.27	947.71	954.61	959.86	964.62
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /m				
a/Å	7.4940(2)	7.4805(1)	7.4712(1)	7.4676(1)	7.4579(1)
b/Å	17.6204(4)	17.5672(3)	17.5324(4)	17.4621(3)	17.4427(3)
<i>c</i> /Å	12.3858(3)	12.3748(2)	12.3673(3)	12.3690(2)	12.3564(2)
α/°	90.00	90.00	90.00	90.00	90.00
β/°	91.668(1)	91.784(1)	91.817(1)	91.821(1)	91.846(1)
γ/°	90.00	90.00	90.00	90.00	90.00
V/ų	1634.82(7)	1625.40(4)	1619.15(6)	1612.10(4)	1606.56(4)
Ζ	2	2	2	2	2
$ ho_{ m calcd}/ m g~cm^{-3}$	1.906	1.936	1.958	1.977	1.994
<i>T/</i> °C	-93	-113	-113	-113	-103
Radiation/µ (mm ⁻¹)	Mo K <i>a</i> /4.01	Mo K <i>a</i> /4.34	Mo K <i>a</i> /4.59	Mo K <i>a</i> /4.87	Mo Ka/5.17
$2\theta_{\rm max}/^{\circ}$	54	54	54	54	54
Reflections	15927	14599	15643	16632	15700
collected					
Reflections unique	3690(0.028)	3663(0.038)	3646(0.053)	3637(0.032)	3621(0.031)
(R _{int})					
Reflections with	3457	3432	3421	3440	3441
<i>l></i> 2σ(<i>l</i>)					
No. of parameters	293	294	293	293	293
$R_1[I > 2\sigma(I)],$	0.0241,0.0580	0.0190,0.0444	0.0230,0.0540	0.0194,0.0408	0.0173,0.0403
wR ₂ [<i>I</i> >2 <i>σ</i> (<i>I</i>)]					
R_1 (all data), w R_2 (all	0.0262,0.0591	0.0210,0.0452	0.0254,0.0550	0.0212,0.0415	0.0188,0.0409
data)					
GOF(F ²)	1.03	1.05	1.05	1.04	1.07
$\Delta ho_{ m max}/\Delta ho_{ m min}$ (e Å ⁻³)	1.22/-0.91	0.61/-0.66	0.83/-0.89	0.78/-1.05	0.62/-0.47
CCDC	1833552	1833555	1833553	1833556	1833554

 Table S1
 Crystallographic data for compounds 1·MeCN, 3·MeCN, 5·MeCN, 7·MeCN and 9·MeCN

Ideal coordination	1·MeCN	3·MeCN	5·MeCN	7·MeCN	9·MeCN
polyhedron	(Ln=Pr)	(Ln=Sm)	(Ln=Gd)	(Ln=Dy)	(Ln=Er)
Enneagon (EP-9)	34.044	34.362	34.575	34.730	34.915
Octagonal pyramid (OPY-9)	24.468	24.311	24.218	24.133	24.086
Heptagonal bipyramid (HBPY-9)	16.822	17.162	17.348	17.569	17.710
Johnson triangular cupola (JTC-9)	15.048	15.095	15.119	15.161	16.000
Capped cube (JCCU-9)	10.797	10.791	10.780	10.800	10.787
Spherical-relaxed capped cube (CCU-9)	9.052	9.065	9.078	9.108	9.115
Capped square antiprism (JCSAPR-9)	4.05249	3.765	3.597	3.459	3.340
Spherical capped square antiprism (CSAPR-9)	3.154	2.828	2.647	2.530	2.377
Tricapped trigonal prism (JTCTPR-9)	5.541	5.263	5.100	4.968	4.848
Spherical tricapped trigonal prism (TCTPR- 9)	4.471	4.134	3.940	3.816	3.655

Table S2 Continuous Shape Measures (CShM) values for the potential coordination polyhedra of the Ln^{III} centre in the structures of complexes $[Ln(NO_3)_3(5BrsalanH)_2(H_2O)]$ ·MeCN (Ln=Pr, Sm, Gd, Dy and Er)^a

^{*a*} The polyhedron with the CShM value in bold is the real coordination polyhedron of the Ln^{III} centre for each compound.

D-H A (Å)	D…A(Å)	H…A(Å)	D-H A(°)	Symmetry of A			
	(Complex 1. MeCN					
C2-H2 O2	3.265(2)	2.45(3)	149(2)	х, у, г			
N1-H(N1)…O1	2.656(3)	1.95(3)	138(2)	х, у, г			
C13-H13…O7	3.329(3)	2.45(3)	158(2)	x, y, z			
C9-H9 O5	3.445(4)	2.61(3)	159(3)	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +2			
O1W-HA(O1W) N5	2.799(5)	2.04(5)	177(5)	<i>x, y, z</i> +1			
01W-HB(01W) 04	2.753(4)	2.08(5)	152(4)	x+1, y, z			
	(Complex 3 •MeCN					
C2-H2 O2	3.231(2)	2.39(2)	147(2)	X. V. Z			
N1-H(N1)01	2.664(2)	1.94(3)	139(2)	X, Y, Z			
C13-H13 O7	3.323(3)	2.48(3)	158(2)	X, Y, Z			
C9-H9 O5	3.453(3)	2.59(3)	157(2)	- <i>x</i> +1, - <i>y</i> , - <i>z</i> +2			
O1W-HA(O1W) N5	2.810(5)	2.06(5)	166(5)	x, y, z+1			
01W-HB(01W)04	2.746(3)	2.06(4)	159(4)	x+1, y, z			
	(Complex 5 •MeCN					
C2-H2 O2	3.212(2)	2.38(3)	150(2)	x, y, z			
N1-H(N1)01	2.662(3)	1.96(3)	136(3)	x, y, z			
C13-H1307	3.317(3)	2.45(3)	155(3)	x, y, z			
C9-H9 O5	3.454(4)	2.61(3)	158(3)	- <i>x</i> +1, - <i>y</i> , - <i>z</i> +2			
01W-HA(01W) N5	2.822(5)	2.03(6)	169(5)	x, y, z+1			
01W-HB(01W) 04	2.744(4)	2.01(5)	160(5)	x+1, y, z			
Complex 9 ·MeCN							
C2-H2 O2	3.173(2)	2.39(3)	144(2)	x, y, z			
N1-H(N1) O1	2.669(2)	2.00(3)	138(2)	x, y, z			
C13-H13 O7	3.304(3)	2.44(3)	155(2)	x, y, z			
C9-H9 O5	3.458(3)	2.62(3)	156(2)	- <i>x</i> +1, - <i>y</i> , - <i>z</i> +2			
O1W-HA(O1W) N5	2.817(4)	2.12(5)	166(6)	x, y, z+1			
O1W-HB(O1W) O4	2.743(3)	2.02(4)	155(4)	x+1, y, z			
D=donor, A=acceptor.							

 Table S3
 H-bonding interactions in the crystal structures of 1·MeCN, 3·MeCN, 5·MeCN and 9·MeCN

O6 […] N4(Å)		Symmetry of N
	Complex 1. MacN	
	complex 1-iviech	
2.876(4)		x+1, y, z
		.,.
	Complex 3·MeCN	
2 00 (/2)	·	4
2.904(3)		x+1, y, z
	complex 5-iviech	
2.921(4)		x+1, y, z
		-
	Complex 9·MeCN	
2.967(3)		x+1, y, z

Table S4 Nitrato-nitrato contacts(Å) in the crystal structures of 1·MeCN, 3·MeCN, 5·MeCN and 9·MeCN

Type ^a	Centroid-centroid (Å)	Symmetry operation
	Complex 1·MeCN	
E1	3.805	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +2
E2	3.723	<i>-x, -y, -z</i> +2
	Complex 3 ·MeCN	
E1	3.795	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +2
E2	3.713	<i>-x, -y, -z</i> +2
	Complex 5·MeCN	
E1	3.791	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +2
E2	3.708	- <i>x</i> , - <i>y</i> , - <i>z</i> +2
	Complex 9 •MeCN	
E1	3.783	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +2
E2	3.697	<i>-x, -y, -z</i> +2

Table S5 Stacking interactions in the crystal structures of 1·MeCN, 3·MeCN, 5·MeCN and 9·MeCN

^{*a*} For descriptions, see main body of the ms.

Contact	Percentage (%)				
	1·MeCN	3·MeCN	5·MeCN	7·MeCN	9·MeCN
О…Н	25.9	25.7	25.8	25.8	25.6
н…н	21.4	21.1	21.3	21.2	21.3
С…Н	13.2	13.3	13.5	13.5	13.4
С…С	11.4	11.5	11.4	11.5	11.6
Br […] H	10.3	10.6	10.7	11.0	11.2
NH	4.2	4.3	4.1	4.2	4.3
O […] Br	4.8	4.6	4.2	4.1	4.0
O…N	1.7	1.7	1.7	1.7	1.6
0…0	1.6	1.5	1.5	1.5	1.5
N […] C	1.4	1.5	1.6	1.5	1.5
Br…Br	1.3	1.4	1.5	1.5	1.5
Br…C	1.1	1.2	1.1	1.1	1.1
OC	0.8	0.8	0.7	0.6	0.7
N […] Br	0.7	0.7	0.7	0.6	0.6
NN	0.2	0.2	0.2	0.2	0.2

Table S6 Percentage values for all types of atomic contacts (based on 2D FP plots) in the crystalstructures of complexes 1·MeCN, 3·MeCN, 5·MeCN, 7·MeCN and 9·MeCN

Fig. S1 The ¹H NMR spectrum (DMSO-d₆, δ /ppm) of complex [Y(NO₃)₃(5BrsalanH)₂(H₂O)] (**11**).

Fig. S2 The ¹H NMR spectrum (DMSO-d₆, δ /ppm) of the free ligand 5BrsalanH.

Fig. S3 Partially labelled plot of the molecular structure of complex $[Pr(NO_3)_3(5BrsalanH)_2(H_2O)]$ ·MeCN (**1**·MeCN); the lattice MeCN molecule is not shown. Symmetry operation used to generate equivalent atoms: (') *x*, -*y*+1/2, *z*. Dashed thick orange lines represent intramolecular H bonds.

Fig. S4 Partially labelled plot of the molecular structure of complex $[Sm(NO_3)_3(5BrsalanH)_2(H_2O)]$ ·MeCN (**3**·MeCN); the lattice MeCN molecule is not shown. Symmetry operation used to generate equivalent atoms: (') x, -y+1/2, z. Dashed thick orange lines represent intramolecular H bonds.

Fig. S5 Partially labelled plot of the molecular structure of complex $[Gd(NO_3)_3(5BrsalanH)_2(H_2O)]$ ·MeCN (**5**·MeCN); the lattice MeCN molecule is not shown. Symmetry operation used to generate equivalent atoms: (') *x*, -*y*+1/2, *z*. Dashed thick orange lines represent intramolecular H bonds.

Fig. S6 Partially labelled plot of the molecular structure of complex $[Er(NO_3)_3(5BrsalanH)_2(H_2O)]$ ·MeCN (**9**·MeCN); the lattice MeCN molecule is not shown. Symmetry operation used to generate equivalent atoms: (') *x*, -*y*+1/2, *z*. Dashed thick orange lines represent intramolecular H bonds.

Fig. S7 The spherical capped square antiprismatic coordination polyhedron of Pr^{III} in complex **1**·MeCN. The smaller cream spheres define the vertices of the ideal polyhedron. Symmetry operation used to generate equivalent atoms: (') *x*, -*y*+1/2, *z*.

Fig. S8 The spherical capped square antiprismatic coordination polyhedron of Sm^{III} in complex **3**·MeCN. The smaller cream spheres define the vertices of the ideal polyhedron. Symmetry operation used to generate equivalent atoms: (') x, -y+1/2, z.

Fig. S9 The spherical capped square antiprismatic coordination polyhedron of Gd^{III} in complex **5**·MeCN. The smaller cream spheres define the vertices of the ideal polyhedron. Symmetry operation used to generate equivalent atoms: (') x, -y+1/2, z.

Fig. S10 The spherical capped square antiprismatic coordination polyhedron of Er^{III} in complex **9**·MeCN. The smaller cream spheres define the vertices of the ideal polyhedron. Symmetry operation used to generate equivalent atoms: (') *x*, -*y*+1/2, *z*.

Fig. S11 A chain in the crystal structure of **7**·MeCN along the crystallographic axis *a*, formed through aquo oxygen-H···non-coordinated nitrato oxygen H bonds and nitrato-nitrato contacts. Dashed thick orange lines represent intramolecular H bonds (see caption of Fig. 2). The dashed thick cyan lines represent the H bonds with the aqua ligands as donors and the lattice MeCN molecules as acceptors; the dashed thick light green and violet lines indicate the aquo-H···non-coordinated nitrato oxygen H bonds and the nitrato-nitrato contacts, respectively.

Fig. S12 FP plots for all types of interactions in the crystal structures of (a) **1**·MeCN, (b) **3**·MeCN, (c) **5**·MeCN and (d) **9**·MeCN. Symbols B, D, F and G indicate acceptor point contributions for the O····H, Br····H, N···O and Br···O interactions, respectively, while B', D', F' and G' stand for the corresponding donor points. C', A and E correspond to the H····N, H····H and C···C interactions, respectively.

Fig. S13 Stacking of layers along the *c* axis in the crystal structure of **7**·MeCN. The stacking (and the consequent formation of the 3D architecture) is formed through C-H···Br H bonds and Br···O contacts indicated by faint cyan and orange shaded areas, respectively.

Fig. S14 χ''_{M} versus *T* plots at 0 and 1000 G dc fields for complex $[Dy(NO_3)_3(5BrsalanH)_2(H_2O)]$ (7) at ac frequencies of 10 and 1000 Hz.