Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

New series of Co, Ni, Zn, and Cd metal-organic architectures driven by an unsymmetrical biphenyl-tricarboxylic acid: Hydrothermal assembly, structural

features and properties

Jin-Zhong Gu,*a Yan Cai, Zi-Yue Qian, Min Wen, Zi-Fa Shi, Dong-Yu Lva and Alexander M.

Kirillov*^b

^aState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China Fax: (+86) 931-891-5196; E-mail: gujzh@lzu.edu.cn

^bCentro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal; E-mail: kirillov@tecnico.ulisboa.pt

Synthesis and analytical data for 2–13

Synthesis of $[Zn_2(\mu-Hnbtc)_2(phen)_2] \cdot 2H_2O$ (2). A mixture of $ZnCl_2$ (40.9 mg, 0.30 mmol), H₃nbtc (99.3 mg, 0.30 mmol), phen (60.0 mg, 0.3 mmol), NaOH (24 mg, 0.60 mmol), and H₂O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C·h⁻¹. Colourless block-shaped crystals of **2** were isolated manually, washed with distilled water and dried (yield 60% based on H₃nbtc). Anal. Calcd for C₅₄H₃₄Zn₂N₆O₁₈: C, 54.70; H, 2.89; N, 7.09. Found: C, 54.98; H, 2.91; N, 7.13%. IR (KBr, cm⁻¹): 3581 w, 3059 w, 1701 m, 1615 s, 1585 m, 1519 m, 1427 m, 1367 s, 1260 w, 1220 w, 1164 w, 1144 w, 1103 w, 1068 w, 915 w, 845 w, 794 w, 774 w, 758 w, 718 m, 688 w, 647 w, 576 w.

Synthesis of $[Zn(Hnbtc)(phen)_2(H_2O)] \cdot 4.5H_2O$ (3). The preparation of 3 was similar to that of 2 except using a different amount of phen (120.0 mg, 0.60 mmol). After cooling the reaction mixture to room temperature, colourless block-shaped crystals of 3 were isolated manually, washed with distilled water and dried (yield 60% based on H₃nbtc). Anal. Calcd for C₃₉H₃₄ZnN₅O_{13.5}: C, 54.84; H, 4.01; N, 8.20. Found: C, 54.63; H, 4.04; N, 8.17%. IR (KBr, cm⁻¹): 3561 w, 3237 w, 1702 w, 1610 s, 1580 s, 1517 m, 1424 m, 1373 s, 1291 w, 1222 w, 1141 w, 1100 w, 1066 w, 1002 w, 886 w, 846 m, 787 w, 724 m, 636 w.

Synthesis of [Ni(Hnbtc)(phen)₂(H₂O)]·6H₂O (4). Synthesis of **4** was similar to **3** except using NiCl₂·6H₂O instead of ZnCl₂. Colorless block-shaped crystals of **4** were isolated manually, washed with distilled water and dried (yield 65% based on H₃nbtc). Anal. Calcd for $C_{39}H_{37}NiN_5O_{15}$: C, 53.57; H, 4.26; N, 8.01. Found: C, 53.75; H, 4.23; N, 8.05%. IR (KBr, cm⁻¹): 3347 m, 1703 w, 1587 s, 1517 m, 1424 m, 1378 s, 1286 w, 1251 w, 1141 w, 1106 w, 1072 w, 973 w, 886 w, 846 m, 771 w, 730 m, 695 w, 643 w, 591 w.

Synthesis of $[Zn_2(\mu-Hnbtc)_2(2,2'-bipy)_2] \cdot 2H_2O$ (5). Synthesis of 5 was similar to 2 except using 2,2'-bipy instead of phen. Colourless block-shaped crystals of 5 were isolated manually, washed with distilled water and dried (yield 55% based on H₃nbtc). Anal. Calcd for C₅₀H₃₄Zn₂N₆O₁₈: C, 52.79; H,

3.01; N, 7.39. Found: C, 52.63; H, 2.99; N, 7.45%. IR (KBr, cm⁻¹): 3418 w, 3068 w, 1691 m, 1595 s, 1529 s, 1504 w, 1472 w, 1443 w, 1407 s, 1377 w, 1346 w, 1316 w, 1270 w, 1250 w, 1230 w, 1164 w, 1098 w, 1072 w, 1022 w, 936 w, 885 w, 814 w, 769 m, 733 w, 693 w, 632 w.

Synthesis of $[Cd_3(\mu_5-nbtc)(\mu_6-nbtc)(2,2'-bipy)_2(H_2O)]_n$ (6). A mixture of CdCl₂·H₂O (60.3 mg, 0.30 mmol), H₃nbtc (66.2 mg, 0.20 mmol), 2,2'-bpy (46.8 mg, 0.30 mmol), NaOH (24.0 mg, 0.60 mmol), and H₂O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C·h⁻¹. Colourless block-shaped crystals of **6** were isolated manually, washed with distilled water and dried (yield 62% based on H₃nbtc). Anal. Calcd for C₅₀H₃₀Cd₃N₆O₁₇: C, 45.35; H, 2.28; N, 6.35. Found: C, 45.31; H, 2.25; N, 6.39%. IR (KBr, cm⁻¹): 3621 w, 3074 w, 1574 s, 1524 s, 1468 m, 1407 s, 1382 s, 1336 s, 1245 w, 1164 w, 1128 w, 1093 w, 1068 w, 1017 w, 972 w, 926 w, 885 w, 845 m, 789 m, 764 m, 728 m, 698 w, 647 w.

Synthesis of {[Zn₃(μ_3 -nbtc)₂(phen)₃(H₂O)₂]·4H₂O} (7). A mixture of ZnCl₂ (40.9 mg, 0.30 mmol), H₃nbtc (66.2 mg, 0.20 mmol), phen (60.0 mg, 0.30 mmol), NaOH (24.0 mg, 0.60 mmol), and H₂O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C·h⁻¹. Colourless block-shaped crystals of **7** were isolated manually, washed with distilled water and dried (yield 60% based on H₃nbtc). Anal. Calcd for C₆₆H₄₆Zn₃N₈O₂₂: C, 52.87; H, 3.09; N, 7.47. Found: C, 52.73; H, 3.07; N, 7.52%. IR (KBr, cm⁻¹): 3365 m, 3063 w, 1604 s, 1586 s, 1529 s, 1517 m, 1477 w, 1424 m, 1361 s, 1222 w, 1141 w, 1106 w, 1071 w, 1048 w, 886 w, 846 m, 787 w, 724 m, 627 w, 636 w.

Synthesis of $[Co(H_2O)_6][Co_2(nbtc)_2(\mu-4,4'-bipy)(4,4'-bipy)_2(H_2O)_6]\cdot 8H_2O$ (8). A mixture of $CoCl_2\cdot 6H_2O$ (71.0 mg, 0.30 mmol), H_3 nbtc (66.2 mg, 0.20 mmol), 4,4'-bipy (46.8 mg, 0.30 mmol), NaOH (24.0 mg, 0.60 mmol), and H_2O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C·h⁻¹. Orange block-shaped crystals of **8** were isolated manually, washed with distilled water and dried (yield 56% based on H_3 nbtc). Anal. Calcd for $C_{60}H_{76}Co_3N_8O_{36}$: C,

43.36; H, 4.61; N, 6.74. Found: C, 43.55; H, 4.58; N, 6.77%. IR (KBr, cm⁻¹): 3277 m, 3063 w, 1604 s, 1535 s, 1412 m, 1373 s, 1216 w, 1170 w, 1141 w, 1066 w, 1042 w, 1002 w, 811 m, 787 w, 736 w, 707 w, 666 w, 626 w.

Synthesis of $\{[Ni_3(\mu_4-nbtc)_2(\mu-4,4'-bipy)_{2.5}(H_2O)_4]\cdot 4H_2O\}_n$ (9). Synthesis of 9 was similar to 8 except using NiCl₂·6H₂O (71.3 mg, 0.30 mmol) instead of CoCl₂·6H₂O. Green block-shaped crystals of 9 were isolated manually, washed with distilled water and dried (yield 63% based on H₃nbtc). Anal. Calcd for C₅₅H₄₈Ni₃N₇O₂₄: C, 48.32; H, 3.54; N, 7.17. Found: C, 48.11; H, 3.56; N, 7.15%. IR (KBr, cm⁻¹): 3652 w, 3292 w, 1610 s, 1533 s, 1493 w, 1412 w, 1377 s, 1220 w, 1169 w, 1133 w, 1068 w, 1012 w, 915 w, 880 w, 820 m, 784 w, 733 w, 703 w, 662 w, 637 w.

Synthesis of {[Cd₂(μ_4 -nbtc)(μ -OH)(2,2'-bipy)₂]·H₂O}_n (10). Synthesis of 10 was similar to 6 except using a different amount of NaOH (28.0 mg, 0.70 mmol). Colourless block-shaped crystals of 10 were obtained (yield 35% based on H₃nbtc). Anal. Calcd for C₃₅H₂₅Cd₂N₅O₁₀: C, 46.69; H, 2.80; N, 7.78. Found: C, 46.85; H, 2.81; N, 7.83%. IR (KBr, cm⁻¹): 3621 w, 3276 w, 1584 s, 1533 m, 1473 w, 1438 m, 1377 s, 1311 w, 1245 w, 1169 w, 1098 w, 1057 w, 1012 w, 885 w, 840 w, 764 m, 733 w, 698 w, 647 w.

Synthesis of $[Cd_2(\mu_4-nbtc)(\mu-OH)(phen)_2(H_2O)]_n$ (11). A mixture of $CdCl_2\cdot 4H_2O$ (60.3 mg, 0.30 mmol), H₃nbtc (66.2 mg, 0.20 mmol), phen (60.0 mg, 0.3 mmol), NaOH (28.0 mg, 0.70 mmol), and H₂O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C ·h⁻¹. Colourless block-shaped crystals of **11** were isolated manually, washed with distilled water and dried (yield 35% based on H₃nbtc). Anal. Calcd for C₃₉H₂₅Cd₂N₅O₁₀: C, 49.39; H, 2.66; N, 7.38. Found: C, 49.56; H, 7.35; N, 7.45%. IR (KBr, cm⁻¹): 3660 w, 3063 w, 1575 s, 1535 m, 1511 w, 1424 m, 1373 s, 1222 w, 1170 w, 1141 w, 1095 w, 990 w, 915 w, 846 m, 782 w, 718 m, 696 w, 637 w.

Synthesis of { $[Zn_2(\mu_5-nbtc)(\mu_3-OH)(\mu-4,4'-bipy)]\cdot4,4'-bipy\cdotH_2O$ }_n (12). A mixture of ZnCl₂·H₂O (40.9 mg, 0.30 mmol), H₃nbtc (66.2 mg, 0.20 mmol), 4,4'-bpy (46.8 mg, 0.30 mmol), NaOH (28.0 mg, 0.70 mmol), and H₂O (10 mL) was stirred at room temperature for 15 min, then sealed in a 25 mL

Teflon-lined stainless steel vessel, and heated at 160 °C for 3 days, followed by cooling to room temperature at a rate of 10 °C·h⁻¹. Colourless block-shaped crystals of **12** were isolated manually, washed with distilled water and dried (yield 32% based on H₃nbtc). Anal. Calcd for $C_{35}H_{25}Zn_2N_5O_{10}$: C, 52.13; H, 3.12; N, 8.68. Found: C, 52.37; H, 3.09; N, 8.71%. IR (KBr, cm⁻¹): 3682 m, 3043 m, 1615 s, 1580 w, 1533 s, 1433 w, 1377 m, 1215 w, 1138 w, 1068 w, 1012 w, 1068 w, 920 w, 840 w, 804 w, 744 w, 703 w, 668 w, 642 w, 607 w.

1					
Cd(1)-O(1)	2.2801(1)	Cd(1)-O(2)	2.7176(2)	Cd(1)-O(6)#1	2.3316(1)
Cd(1)-O(9)	2.3100(1)	Cd(1)-O(10)	2.3425(1)	Cd(1)-O(11)	2.3236(1)
Cd(1)-O(12)	2.2827(1)				
O(1)-Cd(1)-O(2)	51.46(1)	O(1)-Cd(1)-O(9)	91.69(1)	O(1)-Cd(1)-O(10)	81.20(1)
O(1)-Cd(1)-O(11)	110.54(1)	O(1)-Cd(1)-O(12)	96.53(1)	O(1)-Cd(1)-O(6)#1	168.36(1)
O(2)-Cd(1)-O(9)	112.36(1)	O(2)-Cd(1)-O(10)	125.85(1)	O(2)-Cd(1)-O(11)	67.52(1)
O(2)-Cd(1)-O(12)	81.17(1)	O(2)-Cd(1)-O(6)#1	140.17(1)	O(9)-Cd(1)-O(10)	90.90(1)
O(9)-Cd(1)-O(11)	82.60(1)	O(9)-Cd(1)-O(12)	166.44(1)	O(6)#1-Cd(1)-O(9)	82.50(1)
O(10)-Cd(1)-O(11)	166.63(1)	O(10)-Cd(1)-O(12)	79.78(1)	O(6)#1-Cd(1)-O(10)	88.78(1)
O(11)-Cd(1)-O(12)	104.41(1)	O(6)#1-Cd(1)-O(11)	78.83(1)	O(6)#1-Cd(1)-O(12)	87.45(1)
2		., ., .,	~ /		
Zn(1)-O(2)	1.9294(2)	Zn(1)-O(5)#1	1.9194(2)	Zn(1)-N(2)	2.0759(2)
Zn(1)-N(3)	2.0388(2)				
O(2)-Zn(1)-N(2)	99.19(1)	O(2)-Zn(1)-N(3)	120.90(1)	O(2)-Zn(1)-O(5)#1	111.51(1)
N(2)-Zn(1)-N(3)	81.36(1)	O(5)#1-Zn(1)-N(2)	129.62(1)	O(5)#1-Zn(1)-N(3)	112.30(1)
3					
Zn(1)-O(1)	2.0555(1)	Zn(1)-O(9)	2.1659(2)	Zn(1)-N(2)	2.1402(2)
Zn(1)-N(3)	2.1655(2)	Zn(1)-N(4)	2.1139(2)	Zn(1)-N(5)	2.1567(2)
O(1)-Zn(1)-O(9)	81.94(1)	O(1)-Zn(1)-N(2)	98.63(1)	O(1)-Zn(1)-N(3)	100.94(1)
O(1)-Zn(1)-N(4)	90.83(1)	O(1)-Zn(1)-N(5)	158.04(1)	O(9)-Zn(1)-N(2)	93.70(1)
O(9)-Zn(1)-N(3)	170.66(1)	O(9)-Zn(1)-N(4)	97.32(1)	O(9)-Zn(1)-N(5)	81.64(1)
N(2)-Zn(1)-N(3)	77.12(1)	N(2)-Zn(1)-N(4)	166.38(1)	N(2)-Zn(1)-N(5)	96.89(1)
N(3)-Zn(1)-N(4)	91.54(1)	N(3)-Zn(1)-N(5)	97.60(1)	N(4)-Zn(1)-N(5)	76.93(1)
4	. ,	., ., .,		., ., .,	
Ni(1)-O(1)	2.0682(1)	Ni(1)-O(9)	2.0763(1)	Ni(1)-N(2)	2.0775(1)
Ni(1)-N(3)	2.0975(1)	Ni(1)-N(4)	2.0645(1)	Ni(1)-N(5)	2.0802(1)
O(1)-Ni(1)-O(9)	84.09(1)	O(1)-Ni(1)-N(2)	97.35(1)	O(1)-Ni(1)-N(3)	97.35(1)
O(1)-Ni(1)-N(4)	89.46(1)	O(1)-Ni(1)-N(5)	165.92(1)	O(9)-Ni(1)-N(2)	94.71(1)
O(9)-Ni(1)-N(3)	174.32(1)	O(9)-Ni(1)-N(4)	92.57(1)	O(9)-Ni(1)-N(5)	86.84(1)
N(2)-Ni(1)-N(3)	79.67(1)	N(2)-Ni(1)-N(4)	170.51(1)	N(2)-Ni(1)-N(5)	94.10(1)
N(3)-Ni(1)-N(4)	92.94(1)	N(3)-Ni(1)-N(5)	92.74(1)	N(4)-Ni(1)-N(5)	80.20(1)
5					
Zn(1)-O(1)	1.9594(1)	Zn(1)-O(2)	2.6030(2)	Zn(1)-O(5)#1	2.0695(1)
Zn(1)-O(6)#1	2.2713(2)	Zn(1)-N(2)	2.0503(1)	Zn(1)-N(3)	2.1063(1)
O(1)-Zn(1)-O(2)	55.82(1)	O(1)-Zn(1)-N(2)	144.18(1)	O(1)-Zn(1)-N(3)	102.69(1)
O(1)-Zn(1)-O(5)#1	103.08(1)	O(1)-Zn(1)-O(6)#1	98.00(1)	O(2)-Zn(1)-N(2)	89.33(1)
O(2)-Zn(1)-N(3)	108.78(1)	O(2)-Zn(1)-O(5)#1	146.44(1)	O(2)-Zn(1)-O(6)#1	94.18(1)
N(2)-Zn(1)-N(3)	79.15(1)	O(5)#1-Zn(1)-N(2)	111.77(1)	O(6)#1-Zn(1)-N(2)	92.06(1)
O(5)#1-Zn(1)-N(3)	100.90(1)	O(6)#1-Zn(1)-N(3)	155.14(1)	O(5)#1-Zn(1)-O(6)#1	60.63(1)
6					
Cd(1)-O(1)	2.2652(1)	Cd(1)-O(4)#1	2.2596(1)	Cd(1)-O(9)	2.2577(1)
Cd(1)-O(11)	2.3657(1)	Cd(1)-O(14)	2.3816(1)	Cd(1)-O(17)	2.2764(1)
Cd(2)-O(2)	2.2214(1)	Cd(2)-O(11)	2.2953(1)	Cd(2)-O(13)	2.3952(1)
Cd(2)-O(14)	2.4180(1)	Cd(2)-N(3)	2.3146(1)	Cd(2)-N(4)	2.2743(1)
Cd(3)-O(3)	2.2553(1)	Cd(3)-O(5)#2	2.3380(1)	Cd(3)-O(6)#2	2.4077(1)
Cd(3)-O(10)#1	2.2660(1)	Cd(3)-N(5)	2.3429(1)	Cd(3)-N(6)	2.3409(1)
O(1) Cd(1) O(0)	95 28(1)	O(1)-Cd(1)-O(11)	91.87(1)	O(1)-Cd(1)-O(14)	82 89(1)

O(1)-Cd(1)-O(17)	168.07(1)	O(1)-Cd(1)-O(4)#1	87.86(1)	O(9)-Cd(1)-O(11)	92.74(1)
O(9)-Cd(1)-O(14)	173.35(1)	O(9)-Cd(1)-O(17)	96.58(1)	O(4)#1-Cd(1)-O(9)	95.06(1)
O(11)-Cd(1)-O(14)	80.95(1)	O(11)-Cd(1)-O(17)	88.88(1)	O(4)#1-Cd(1)-O(11)	172.18(1)
O(14)-Cd(1)-O(17)	85 47(1)	O(4)#1-Cd(1)-O(14)	91 26(1)	O(4)#1-Cd(1)-O(17)	89 77(1)
O(2)-Cd(2)-O(11)	91.65(1)	O(2)-Cd(2)-O(13)	88 38(1)	O(2)-Cd(2)-O(14)	90.78(1)
O(2) Cd(2) O(11)	158 93(1)	O(2) Cd(2) V(4)	88.03(1)	O(11)-Cd(2)-O(13)	135 85(1)
O(2) Cd(2) P(3)	81.62(1)	O(2) Cd(2) N(3)	92 19(1)	O(11) - Cd(2) - N(4)	119.47(1)
O(13) Cd(2) O(14)	54.25(1)	O(11) - Cd(2) - N(3)	103.06(1)	O(13) Cd(2) N(4)	104.66(1)
O(13)-Cd(2)-O(14)	110 28(1)	O(13)-Cd(2)-N(3)	103.00(1)	O(13)-Cu(2)-N(4)	72.00(1)
O(14)-Cu(2)-N(3)	110.28(1)	O(14)-Cd(2)-IN(4)	138.90(1)	N(3)-Cd(2)-N(4)	72.09(1)
O(3)-Cd(3)-N(3)	92.01(1)	O(3)-Cd(3)-N(0)	92.89(1) 104.01(1)	N(5) - Cd(3) - O(5) + 2	70,11(1)
O(5)+O(0)+2	82.23(1) 04.08(1)	O(3)-Cu(3)-O(10)#1	104.01(1)	N(3)-Cu(3)-N(0)	70.11(1) 150.00(1)
O(5)#2-Cd(3)-N(5)	94.98(1)	O(6)#2-Cd(3)-N(5)	92.09(1)	O(10)#1-Cd(3)-N(5)	150.09(1)
O(5)#2-Cd(3)-N(6)	128.88(1)	O(6)#2-Cd(3)-N(6)	161.96(1)	O(10)#1-Cd(3)-N(6)	84.30(1)
O(5)#2-Cd(3)-O(6)#2	55.80(1)	O(5)#2-Cd(3)-O(10)#1	89.11(1)	O(6)#2-Cd(3)-O(10)#1	113.73(1)
7					
Zn(1)-O(1)	1.9779(1)	Zn(1)-O(5)#1	1.9731(1)	Zn(1)-O(6)#1	2.6106(1)
Zn(1)-O(9)	2.0887(1)	Zn(1)-N(2)	2.0998(1)	Zn(1)-N(3)	2.1367(1)
Zn(2)-O(3)	2.0921(1)	Zn(2)-O(3)#2	2.0921(1)	Zn(2)-O(4)	2.2305(1)
Zn(2)-O(4)#2	2.2305(1)	Zn(2)-N(4)	2.0986(1)	Zn(2)-N(4)#2	2.0986(1)
O(1)-Zn(1)-O(9)	93.94(1)	O(1)-Zn(1)-N(2)	112.22(1)	O(1)-Zn(1)-N(3)	96.40(1)
O(1)-Zn(1)-O(5)#1	102.94(1)	O(1)-Zn(1)-O(6)#1	154.39(1)	O(9)-Zn(1)-N(2)	89.39(1)
O(9)-Zn(1)-N(3)	165.56(1)	O(5)#1-Zn(1)-O(9)	93.61(1)	O(6)#1-Zn(1)-O(9)	96.49(1)
N(2)-Zn(1)-N(3)	77.38(1)	O(5)#1-Zn(1)-N(2)	144.42(1)	O(6)#1-Zn(1)-N(2)	91.26(1)
O(5)#1-Zn(1)-N(3)	93.86(1)	O(6)#1-Zn(1)-N(3)	78.27(1)	O(5)#1-Zn(1)-O(6)#1	53.17(1)
O(3)-Zn(2)-O(4)	60.71(1)	O(3)-Zn(2)-N(4)	110.59(1)	O(3)-Zn(2)-O(3)#2	136.27(1)
O(3)-Zn(2)-O(4)#2	91.30(1)	O(3)-Zn(2)-N(4)#2	103.02(1)	O(4)-Zn(2)-N(4)	92.61(1)
O(4)#2-Zn(2)-N(4)	157.65(1)	N(4)-Zn(2)-N(4)#2	78.47(1)		
8					
Co(1)-O(2)	2.0999(1)	Co(1)-O(9)	2.0827(1)	Co(1)-O(10)	2.1154(1)
Co(1)-O(11)	2.0789(1)	Co(1)-N(2)	2.1926(1)	Co(1)-N(4)	2.1970(1)
Co(2)-O(12)	2.0106(1)	Co(2)-O(12)#1	2.0106(1)	Co(2)-O(13)	2.1710(1)
Co(2)-O(13)#1	2.1710(1)	Co(2)-O(14)	2.0908(1)	Co(2)-O(14)#1	2.0908(1)
O(2)-Co(1)-O(9)	91.97(1)	O(2)-Co(1)-O(10)	90.89(1)	O(2)-Co(1)-O(11)	177.64(1)
O(2)-Co(1)-N(2)	92.07(1)	O(2)-Co(1)-N(4)	90.01(1)	O(9)-Co(1)-O(10)	174.81(1)
O(9)-Co(1)-O(11)	86.47(1)	O(9)-Co(1)-N(2)	88.01(1)	O(9)-Co(1)-N(4)	86.52(1)
O(10)-Co(1)-O(11)	90.54(1)	O(10)-Co(1)-N(2)	96.22(1)	O(10)-Co(1)-N(4)	89.15(1)
O(11)-Co(1)-N(2)	89.65(1)	O(11)-Co(1)-N(4)	88.13(1)	N(2)-Co(1)-N(4)	174.21(1)
O(12)-Co(2)-O(13)	89.12(1)	O(12)-Co(2)-O(14)	89.81(1)	O(12)-Co(2)-O(13)#1	90.88(1)
O(12)-Co(2)-O(14)#1	90.19(1)	O(13)-Co(2)-O(14)	91.12(1)	O(13)-Co(2)-O(14)#1	88.88(1)
O(7)#2-Cd(2)-Cl(1)	132.23(14)	O(2)-Cd(2)-Cl(1)	90.43(12)	N(3)-Cd(2)-Cl(1)	91.82(14)
N(4)-Cd(2)-Cl(1)	123.16(12)	O(7)#2-Cd(2)-O(6)#2	52.08(16)	Cl(1)-Cd(2)-O(6)#2	87.11(12)
N(4)-Cd(2)-O(6)#2	137.63(18)	N(3)-Cd(2)-O(6)#2	80.51(18)	O(2)-Cd(2)-O(6)#2	122.51(16)
Cd(2)-Cl(1)-Cd(1)	90.15(5)				
9	~ /				
Ni(1)-O(2)	2.2273(2)	Ni(1)-O(4)#1	2.0615(2)	Ni(1)-O(12)	2.0190(2)
Ni(1)-O(18)	2.0945(2)	Ni(1)-N(5)	2.1107(2)	Ni(1)-N(7)	2.1075(2)
Ni(2)-O(2)	2.1471(2)	Ni(2)-O(9)#2	2.0559(2)	Ni(2)-O(11)	2.0442(2)
Ni(2)-O(17)	2 0797(2)	Ni(2)-O(18)	2.0869(2)	Ni(2)-N(3)	2.0757(2)
	2.0///2/	1,1(=) 0(10)			
Ni(3)-O(5)	2.0578(2)	Ni(3)-O(14)#3	2.1170(2)	Ni(3)-O(19)	2.0461(2)
Ni(3)-O(5) Ni(3)-O(20)	2.0578(2) 2.1137(2)	Ni(3)-O(14)#3 Ni(3)-N(6)#4	2.1170(2) 2.1063(2)	Ni(3)-O(19) Ni(3)-N(4)#5	2.0461(2) 2.0887(2)

O(2)-Ni(1)-O(12)	84.92(1)	O(2)-Ni(1)-O(18)	77.14(1)	O(2)-Ni(1)-N(5)	100.43(1)
O(2)-Ni(1)-N(7)	167.66(1)	O(2)-Ni(1)-O(4)#1	90.74(1)	O(12)-Ni(1)-O(18)	92.77(1)
O(12)-Ni(1)-N(5)	88.93(1)	O(12)-Ni(1)-N(7)	90.43(1)	O(4)#1-Ni(1)-O(12)	174.88(1)
O(18)-Ni(1)-N(5)	176.89(1)	O(18)-Ni(1)-N(7)	91.71(1)	O(4)#1-Ni(1)-O(18)	88.90(1)
N(5)-Ni(1)-N(7)	90.89(1)	O(4)#1-Ni(1)-N(5)	89.19(1)	O(4)#1-Ni(1)-N(7)	94.36(1)
O(2)-Ni(2)-O(11)	91.15(1)	O(2)-Ni(2)-O(17)	98.98(1)	O(2)-Ni(2)-O(18)	79.11(1)
O(2)-Ni(2)-N(3)	92.96(1)	O(2)-Ni(2)-O(9)#2	170.74(1)	O(11)-Ni(2)-O(17)	87.19(1)
O(11)-Ni(2)-O(18)	88.72(1)	O(11)-Ni(2)-N(3)	173.53(1)	O(9)#2-Ni(2)-O(11)	85.77(1)
O(17)-Ni(2)-O(18)	175.46(1)	O(17)-Ni(2)-N(3)	87.23(1)	O(9)#2-Ni(2)-O(17)	89.60(1)
O(18)-Ni(2)-N(3)	96.96(1)	O(9)#2-Ni(2)-O(18)	92.08(1)	O(9)#2-Ni(2)-N(3)	90.92(1)
O(5)-Ni(3)-O(19)	93.51(1)	O(5)-Ni(3)-O(20)	93.10(1)	O(5)-Ni(3)-O(14)#3	176.83(1)
O(5)-Ni(3)-N(6)#4	91.07(1)	O(5)-Ni(3)-N(4)#5	87.73(1)	O(19)-Ni(3)-O(20)	85.36(1)
O(14)#3-Ni(3)-O(19)	89.05(1)	O(19)-Ni(3)-N(6)#4	170.95(1)	O(19)-Ni(3)-N(4)#5	93.94(1)
O(14)#3-Ni(3)-O(20)	88.99(1)	O(20)-Ni(3)-N(6)#4	86.61(1)	O(20)-Ni(3)-N(4)#5	178.95(1)
O(14)#3-Ni(3)-N(6)#4	86.66(1)	O(14)#3-Ni(3)-N(4)#5	90.21(1)	N(4)#5-Ni(3)-N(6)#4	94.03(1)
Ni(1)-O(2)-Ni(2)	94.98(1)				
10					
Cd(1)-O(1)	2.2427(2)	Cd(1)-O(5)#1	2.4129(2)	Cd(1)-O(6)#1	2.4568(2)
Cd(1)-O(9)	2.3310(2)	Cd(1)-N(2)	2.3749(2)	Cd(1)-N(3)	2.3470(2)
Cd(2)-O(2)	2,3539(2)	Cd(2)-O(3)#2	2,2265(2)	Cd(2)-O(9)	2.2732(2)
Cd(2) - N(4)	2.3481(2)	Cd(2) - N(5)	2.3290(2)		
O(1)-Cd(1)-O(9)	109.42(1)	O(1)-Cd(1)-N(2)	99 19(1)	O(1)-Cd(1)-N(3)	87 80(1)
O(1) - Cd(1) - O(5) = 0	91.09(1)	O(1) Cd(1) O(6)#1	144 59(1)	O(9)-Cd(1)-N(2)	146 39(1)
O(9)-Cd(1)-N(3)	94.06(1)	O(5)#1-Cd(1)-O(9)	101.72(1)	O(6) #1-Cd(1)-O(9)	82 26(1)
N(2)-Cd(1)-N(3)	69 24(1)	O(5)#1-Cd(1)-N(2)	94 84(1)	O(6)#1-Cd(1)-N(2)	84 53(1)
$\Omega(5)$ #1-Cd(1)-N(3)	163.61(1)	O(6)#1-Cd(1)-N(3)	125 59(1)	O(5)#1-Cd(1)-O(6)#1	53 52(1)
O(3) # 1 - Cd(1) - N(3)	91.21(1)	O(0)#1-Cd(1)-N(3) O(2) Cd(2) N(4)	123.39(1) 123.14(1)	O(3)#1-Cd(1)-O(0)#1	33.32(1)
O(2) - Cd(2) - O(3) = 0	91.21(1) 84.40(1)	O(2)-Cd(2)-N(4) O(9) Cd(2) N(4)	123.14(1)	O(2)-Cd(2)-N(5)	103 69(1)
O(2) + Cd(2) + O(3) + 2 O(3) + 2 + Cd(2) + O(9)	115 20(1)	N(4) Cd(2) N(5)	69 99(1)	O(3)+Cd(2)-N(3)	88 50(1)
O(3)#2-Cd(2)-O(3)	113.20(1)	R(4)-Cd(2)-R(3)	111 75(1)	O(3)#2- $O(2)$ -1 $V(4)$	88.50(1)
11	137.04(1)	Cu(1)-O(9)-Cu(2)	111.73(1)		
\mathbf{II}	23730(2)	Cd(1) O(4)#1	2.2258(1)	Cd(1) O(0)	2 5201(2)
Cd(1) - O(1)	2.3730(2)	Cd(1) - O(4) + 1	2.2256(1)	Cd(1) - O(3)	2.3291(2)
Cd(1) - O(10)	2.1317(1)	Cd(1)-N(2)	2.5354(2)	Cd(1)-IN(3)	2.3308(2)
Cd(2) - O(2)	2.2334(1)	Cd(2) - O(3) + 2	2.3849(2)	Cd(2) - O(0) + 2	2.3702(2)
Cd(2)=O(10)	2.1477(1)	Cu(2)-IN(4)	2.3704(2)	Cu(2)-N(3)	2.3713(2)
O(1) - Cd(1) - O(9)	110 60(1)	O(1)-Cd(1)-O(10)	86.30(1)	O(1)-Cd(1)-N(2)	81.38(1)
O(1)-Cd(1)-N(3)	110.00(1)	O(1)-Cd(1)-O(4)#1	80.91(1)	O(9)-Cu(1)-O(10)	81.83(1)
O(9)-Cd(1)-N(2)	109.70(1)	O(9)-Cd(1)-N(3)	85.73(1)	O(4)#1-Cd(1)-O(9)	87.98(1)
O(10)-Cd(1)-N(2)	90.81(1)	O(10)-Ca(1)-N(3)	156.19(1)	O(4)#1- $Cd(1)$ - $O(10)$	110.22(1)
N(2)-Cd(1)-N(3)	/0.49(1)	O(4)#1-Cd(1)-N(2)	149.75(1)	O(4)#1- $Cd(1)$ - $N(3)$	88.03(1)
O(2)-Cd(2)-O(10)	103.92(1)	O(2)-Cd(2)-N(4)	92.16(1)	O(2)-Cd(2)-N(5)	100.82(1)
O(2)-Cd(2)-O(5)#2	147.24(1)	O(2)-Cd(2)-O(6)#2	94.48(1)	O(10)-Cd(2)-N(4)	97.51(1)
O(10)-Cd(2)-N(5)	152.80(1)	O(5)#2-Cd(2)-O(10)	81.89(1)	O(6)#2-Cd(2)-O(10)	99.32(1)
N(4)-Cd(2)-N(5)	70.27(1)	O(5)#2-Cd(2)-N(4)	119.39(1)	O(6)#2-Cd(2)-N(4)	159.84(1)
O(5)#2-Cd(2)-N(5)	83.44(1)	O(6)#2-Cd(2)-N(5)	89.78(1)	O(5)#2-Cd(2)-O(6)#2	52.86(1)
Cd(1)-O(10)-Cd(2)					
12					
Zn(1)-O(1)	2.0805(2)	Zn(1)-O(4)#1	2.1165(2)	Zn(1)-O(6)#2	2.3933(2)
Zn(1)-O(9)	2.1267(2)	Zn(1)-O(9)#3	2.0528(2)	Zn(1)-N(2)	2.0899(2)
Zn(2)-O(3)	1.9550(2)	Zn(2)-O(5)#4	1.9399(2)	Zn(2)-O(9)#5	1.9308(2)

Zn(2)-N(3)#6	2.0318(2)				
O(1)-Zn(1)-O(9)	90.65(1)	O(1)-Zn(1)-N(2)	93.76(1)	O(1)-Zn(1)-O(6)#2	173.36(1)
O(1)-Zn(1)-O(9)#3	100.31(1)	O(1)-Zn(1)-O(4)#1	85.65(1)	O(9)-Zn(1)-N(2)	99.71(1)
O(6)#2-Zn(1)-O(9)	94.48(1)	O(9)-Zn(1)-O(9)#3	81.01(1)	O(4)#1-Zn(1)-O(9)	172.73(1)
O(6)#2-Zn(1)-N(2)	81.24(1)	O(9)#3-Zn(1)-N(2)	165.92(1)	O(4)#1-Zn(1)-N(2)	86.80(1)
O(6)#2-Zn(1)-O(9)#3	84.68(1)	O(4)#1-Zn(1)-O(6)#2	89.69(1)	O(4)#1-Zn(1)-O(9)#3	93.48(1)
O(3)-Zn(2)-O(5)#4	108.20(1)	O(3)-Zn(2)-N(3)#6	110.32(1)	O(3)-Zn(2)-O(9)#5	109.97(1)
O(5)#4-Zn(2)-N(3)#6	106.06(1)	O(5)#4-Zn(2)-O(9)#5	116.36(1)	O(9)#5-Zn(2)-N(3)#6	105.80(1)
Zn(1)-O(9)-Zn(1)#3	98.74(1)	Zn(1)-O(9)-Zn(2)#7	135.66(1)	Zn(1)#3-O(9)-Zn(2)#7	104.52(1)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 *x*, *y*+1, *z*-1 for **1**; #1 –*x*+2, –*y*+1, –*z* for **2**; #1 –*x*+2, –*y*, –*z*+1 for **5**; #1 –*x*+1, –*y*, –*z*+2; #2 *x*, *y*, *z*+1 for **6**; #1 –*x*, *y*, –*z*; #2 –*x*+2, *y*, –*z*+1/2 for **7**; #1 –*x*+1, –*y*+1, –*z* for **8**; #1 –*x*+1, –*y*+2, –*z*+1; #2 –*x*+1, –*y*+1, –*z*; #3 –*x*, –*y*+1, –*z*-1; #4 –*x*, –*y*+1, –*z*; #5 –*x*, –*y*+2, –*z* for **9**; #1 –*x*, –*y*, –*z*; #2 –*x*+1, –*y*+1, –*z*; #5 –*x*, –*y*+2, –*z* for **9**; #1 –*x*, –*y*, –*z*; #2 –*x*+1, –*y*+1, –*z*; #5 –*x*, –*y*+1, –*z*; #3 –*x*, *y*, –*z*; #2 –*x*+1, –*y*+1, –*z*; #5 –*x*, –*y*+1, –*z*; #3 –*x*, *y*, –*z*; #2 –*x*+1, –*y*+1, –*z*; #5 –*x*, –*y*+1, –*z*; #3 –*x*, *y*, –*z*; #2 –*x*+1, –*y*+1, –*z*; #5 –*x*, –*y*+1, –*z*; #3 –*x*, *y*, –*z*+1/2; #4 –*x*, –*y*+2, –*z*; #5 *x*, –*y*+1, *z*–1/2; #6 –*x*+1, –*y*+1, –*z*; #7 *x*, –*y*+1, *z*+1/2 for **12**.

Complexes	D-HA	d(D-H)	<i>d</i> (HA)	<i>d</i> (DA)	∠DHA	Symmetry code
1	O(4)-H(1)···O(5)	0.78	1.83	2.6057(2)	173.0	<i>x</i> , <i>y</i> +1, <i>z</i>
	O(9)-H(1W)···O(13)	0.86	1.90	2.7100(2)	157.0	
	O(9)-H(2W)···O(6)	0.86	1.98	2.7239(2)	145.0	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1
	O(10)-H(3W)···O(1)	0.86	1.90	2.7023(2)	153.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
	O(10)-H(4W)…O(3)	0.86	2.16	2.7937(2)	130.0	<i>x</i> , <i>y</i> , <i>z</i> -1
	O(11)-H(5W)···O(7)	0.87	2.13	2.9307(2)	153.0	<i>-x</i> , <i>-y</i> +1, <i>-z</i> +1
	O(11)-H(6W)O(9)	0.87	1.98	2.8413(2)	168.0	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i>
	O(12)-H(7W)O(13)	0.88	1.95	2.7758(2)	157.0	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(12)-H(8W)O(5)	0.88	2.06	2.7844(2)	140.0	<i>x</i> , <i>y</i> +1, <i>z</i> -1
	O(13)-H(9W)O(10)	0.85	2.05	2.8689(2)	163.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
	O(13)-H(10W)O(2)	0.85	1.99	2.7989(2)	159.0	<i>x</i> +1, <i>y</i> , <i>z</i>
2	O(9)-H(1W)···O(6)	0.85	2.07	2.9208(3)	174.0	- <i>x</i> +2, - <i>y</i> , - <i>z</i>
	O(9)-H(2W)···O(3)	0.85	2.21	2.9185(3)	140.0	<i>x</i> +1, <i>y</i> , <i>z</i>
	O(4)-H(4)···O(1)	0.82	1.81	2.6315(3)	176.0	<i>x</i> -1, <i>y</i> , <i>z</i>
3	O(3)-H(1)…O(10)	0.82	1.84	2.5972(2)	153.0	<i>x</i> , - <i>y</i> +1, <i>z</i> +1/2
	O(9)-H(1W)…O(14)	0.91	1.89	2.7265(2)	153.0	
	O(9)-H(2W)…O(13)	0.90	2.12	2.7710(2)	128.0	
	O(10)-H(3W)···O(4)	0.85	2.01	2.8169(2)	159.0	- <i>x</i> +1/2, <i>y</i> -1/2, - <i>z</i> +1/2
	O(11)-H(5W)···O(5)	0.69	2.35	2.6675(2)	110.0	- <i>x</i> , - <i>y</i> +1, - <i>z</i>
	O(12)-H(7W)···O(10)	0.69	2.14	2.7761(2)	153.0	
	O(12)-H(8W)···O(5)	0.85	2.11	2.9600(2)	178.0	- <i>x</i> +1/2, - <i>y</i> +3/2, - <i>z</i>
	O(13)-H(9W)···O(2)	0.85	1.89	2.7377(2)	179.0	- <i>x</i> , <i>y</i> , - <i>z</i> +1/2
	O(13)-H(10W)····O(2)	0.85	1.89	2.7377(2)	179.0	
	O(14)-H(11W)····O(6)	0.85	1.85	2.7002(2)	180.0	- <i>x</i> , - <i>y</i> +1, - <i>z</i>
	O(14)-H(12W)····O(6)	0.85	1.85	2.7002(2)	180.0	<i>x</i> , - <i>y</i> +1, <i>z</i> +1/2
	O(15)-H(13W)····O(2)	0.85	1.77	2.5972(2)	163.0	- <i>x</i> +1/2, <i>y</i> -1/2, - <i>z</i> +1/2
4	O(4)-H(1)…O(11)	0.82	1.79	2.6058(2)	173.0	<i>x</i> +1, <i>y</i> , <i>z</i>
	O(9)-H(1W)···O(14)	0.86	1.90	2.7409(2)	166.0	x+1/2, -y+1/2, z+1/2
	O(9)-H(2W)···O(12)	0.86	2.27	3.0139(2)	146.0	- <i>x</i> +1/2, <i>y</i> -1/2, - <i>z</i> +1/2
	O(10)-H(3W)···O(14)	0.80	2.00	2.7832(2)	163.0	x+1/2, -y+1/2, z+1/2
	O(10)-H(4W)···O(2)	0.85	1.92	2.7711(2)	179.0	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +1
	O(11)-H(5W)···O(13)	0.97	2.24	2.9879(2)	133.0	
	O(11)-H(6W)···O(3)	0.66	2.30	2.7748(2)	130.0	- <i>x</i> +1, - <i>y</i> , - <i>z</i> +1
	O(12)-H(7W)···O(2)	0.85	1.96	2.8098(2)	178.0	- <i>x</i> +1/2, <i>y</i> +1/2, - <i>z</i> +1/2
	O(14)-H(11W)···O(5)	0.86	1.82	2.6715(2)	176.0	
5	O(3)-H(1)···O(9)	0.82	1.79	2.5961(2)	166.0	<i>x</i> -1, <i>y</i> , <i>z</i> +1
	O(9)-H(1W)···O(2)	0.83	1.96	2.7637(2)	166.0	<i>x</i> , <i>y</i> , <i>z</i> -1
	O(9)-H(2W)···O(5)	0.85	1.85	2.6882(2)	171.0	- <i>x</i> +2, - <i>y</i> , - <i>z</i> +1
6	O(17)-H(1w)···O(3)	0.88	2.13	2.7889(1)	132.0	- <i>x</i> -1, - <i>y</i> +1, - <i>z</i>
	O(17)-H(2w)···O(12)	0.87	1.87	2.6275(1)	145.0	
7	O(9)-H(1W)···O(4)	0.85	1.87	2.7243(1)	179.0	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(9)-H(2W)…O(2)	0.85	1.83	2.6819(1)	179.0	

Table S2. Hydrogen bonds in crystal packing $[Å, \circ]$ of 1–3, 6, 7, and 9–13.

	O(11)-H(5W)…O(10)	0.85	2.14	2.9919(1)	178.0	
	O(11)-H(6W)···O(2)	0.85	1.86	2.7106(1)	178.0	
8	O(9)-H(1W)…O(4)	0.82	1.87	2.6874(1)	178.0	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(9)-H(2W)…O(4)	0.85	1.87	2.7233(1)	180.0	- <i>x</i> +2, - <i>y</i> , <i>z</i> +1
	O(10)-H(3W)…O(1)	0.82	1.90	2.6372(1)	150.0	
	O(10)-H(4W)…O(18)	0.85	1.90	2.7529(2)	180.0	<i>x</i> , <i>y</i> , <i>z</i> +1
	O(11)-H(5W)···O(16)	0.82	1.94	2.7437(2)	166.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1
	O(11)-H(6W)···O(3)	0.85	1.84	2.6860(1)	180.0	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(12)-H(7W)···O(17)	0.82	1.93	2.6656(1)	149.0	
	O(12)-H(8W)···O(5)	0.85	1.80	2.6462(1)	180.0	- <i>x</i> +1, - <i>y</i> , - <i>z</i> +1
	O(13)-H(10W)…O(1)	0.86	2.00	2.8444(2)	167.0	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
	O(14)-H(11W)···O(15)	0.82	1.85	2.6635(1)	171.0	
	O(14)-H(12W)···O(3)	0.83	2.04	2.8735(2)	179.0	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
	O(15)-H(13W)…O(7)	0.86	2.13	2.9915(2)	178.0	<i>x</i> , <i>y</i> +1, <i>z</i> -1
	O(15)-H(14W)…O(1)	0.85	1.97	2.8179(2)	180.0	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
	O(16)-H(15W)···O(13)	0.84	1.97	2.8188(2)	179.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
	O(16)-H(16W)…O(5)	0.84	1.91	2.7486(2)	179.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
	O(17)-H(17W)···O(3)	0.85	1.94	2.7897(2)	180.0	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
	O(17)-H(18W)···O(6)	0.85	1.85	2.6982(1)	178.0	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +1
	O(18)-H(19W)…N(3)	0.83	1.93	2.7697(2)	179.0	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +1
	O(18)-H(20W)…O(10)	0.85	2.13	2.9794(2)	180.0	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
9	O(17)-H(1W)…O(11)	0.82	2.59	2.8438(2)	100.0	
	O(18)-H(4W)…O(3)	0.85	1.65	2.4974(2)	179.0	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1
	O(19)-H(6W)…O(1)	0.85	1.92	2.7655(2)	180.0	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i>
	O(20)-H(7W)···O(6)	0.82	1.93	2.6406(2)	145.0	
10	O(9)-H(1)···O(10)	0.78	2.44	2.9574(2)	124.0	
	O(10)-H(1W)…O(6)	0.83	2.30	2.9072(2)		<i>x</i> , <i>y</i> +1, <i>z</i>
	O(10)-H(2W)···O(4)	0.83	2.45	2.7399(2)		- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1
11	O(9)-H(1W)···O(3)	0.85	1.83	2.6817(2)	180.0	-x, -y, -z
	O(9)-H(2W)···O(5)	0.85	2.03	2.8753(2)	179.0	<i>x</i> , <i>y</i> -1, <i>z</i>
12	O(9)-H(1)···O(2)	0.85	1.83	2.6791(2)	180.0	
	O(10)-H(1W)···O(2)	0.85	2.03	2.8782(2)	179.0	

Table S3. The emission maxima wavelengths (nm) for compounds 1-3, 5-7, 10-12 and H₃nbtc.^a

Compound	H ₃ nbtc	1	2	3	5
$\lambda_{ m em}$	391, 461	402, 466	391, 464	398, 465	401, 465
Compound	6	7	10	11	12
λ_{em}	396, 466	404, 450	397, 464	383, 455	392, 462

 ${}^{a}\lambda_{ex} = 2\overline{71}$ nm for H₃nbtc and $\lambda_{ex} = 277$ nm for 1–3, 5–7, and 10–12.

Fig. S1. 2D H-bonded network in **2** viewed along the *bc* plane (green lines present the H-bonds, NO₂ groups are omitted for clarity).

Fig. S2. 3D H-bonded network in 3 seen along the ac plane (green lines present the H-bonds, NO₂ groups are omitted for clarity).

Fig. S3. 2D H-bonded network in **5** viewed along the *ac* plane (green lines present the H-bonds, NO₂ groups are omitted for clarity).

Fig. S4. PXRD patterns of compounds 1–12 at room temperature. Black paterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data.