Supporting information

Promoting effect of nickel hydroxide on electrocatalytic performance of Pt in alkaline solution

Yao Wang,^{a†} Yuchen Qin,^{a†} Xin Zhang, ^{*a} Xiaoping Dai,^a Hongying Zhuo,^a Chenglong Luan,^a Yan Jiang,^a Huihui Zhao,^a Hai Wang,^b and Xingliang Huang^{*a}

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

b National Institute of Metrology, Beijing 100013, China

† These authors contributed equally to this work.

The Calculation method of Scherrer equation:

The Scherrer equation, in X–ray diffraction and crystallography, is a formula that relates the size of sub–micrometre particles, or crystallites, in a solid to the broadening of a peak in a diffraction pattern. The Calculation method of Scherrer equation is follows:

$D = K \cdot \gamma / B \cdot \cos \theta$

Where D is the mean size of the ordered (crystalline) domains, K=0.89, is Scherrer constant, γ =0.154056 nm, is the X–ray wavelength, B is the line broadening at half the maximum intensity (FWHM), θ is the Bragg angle. All angles are converted to radians.

Figure S1. TEM images of (a) 10:1–Pt/Ni(OH)₂/N–CNTs, (b) 10:5–Pt/Ni(OH)₂/N–CNTs and (c) Pt/N–CNTs catalysts.

Figure S2. (a) XPS patterns of the N 1s of all nanomaterials. (b) Enlarged N 1s pattern of 10:1-Pt/Ni(OH)₂/N–CNTs.

Figure S3. Nyquist plots of electrochemical impedance spectra (EIS) for 10:5–Pt/Ni(OH)₂/N– CNTs, 10:2–Pt/Ni(OH)₂/N–CNTs, 10:1–Pt/Ni(OH)₂/N–CNTs and Pt/N–CNTs in 0.1 M NaOH solution.

Figure S4. *i*–*t* curves (at 0.5 V vs. RHE) of MOR for 10:2–Pt/Ni(OH)₂/N–CNTs and Pt/N–CNTs catalysts.

Figure S5. ORR polarization curves of (a) Pt/C and (c) Pt/CNTs in O₂-saturated 0.1 M NaOH solution at a scan rate of 10 mV s⁻¹ and different rotation rates. Koutecky-Levich plots of (b) Pt/C and (d) Pt/CNTs at different potentials.

Figure S6. (a) MOR activity of 10:2–Pt/Ni(OH)₂/N–CNTs and 10:2–Pt/Ni(OH)₂/CNTs. (b) ORR activity of 10:2–Pt/Ni(OH)₂/N–CNTs and 10:2–Pt/Ni(OH)₂/ CNTs.

Sample		parameter	D/nm	Dava /nm	
	20 /º	20 /º hkl FWHM /rad		2,111	Davg
10:5– Pt/Ni(OH) ₂ /N– CNTs	39.8	111	0.0595	2.17	
	46.2	200	0.0586	2.15	
	67.7	220 0.0526		2.16	2.14
	81.6	311	0.0496	2.09	
	39.8	111	0.0671	1.92	
10:2– Pt/Ni(OH) ₂ /N–	46.2	200	0.0616	2.05	
CNTs	67.7	220	0.0667	1.71	1.95
	81.6	311	0.0485	2.14	
	39.8	111	0.0535	2.41	
10:1– Pt/Ni(OH)2/N–	46.2	200	0.0608	2.07	
CNTs	67.7	220	0.0633	1.80	2.01
	81.6	311	0.0585	1.77	
Pt/N–CNTs	39.8	111	0.0597	2.16	
	46.2	200	0.0722	1.75	
	67.7	220	0.0601	1.90	1.96
	81.6	311	0.0509	2.04	

Table S1. The calculation results of Scherrer equation.

Sample	Pt	Ni	Ν	С	Pt:Ni (mass ratio)
10:5-Pt/Ni(OH) ₂ /N-CNTs	1.194 mg	0.504 mg	0.038 mg	0.918 mg	2.36
10:2-Pt/Ni(OH) ₂ /N-CNTs	1.184 mg	0.201 mg	0.036 mg	0.910 mg	5.89
10:1-Pt/Ni(OH) ₂ /N-CNTs	1.215 mg	0.116 mg	0.042 mg	0.924 mg	10.47
Pt/N–CNTs	1.256 mg	/	0.041 mg	0.899 mg	/

Table S2. The compositions of the Pt/Ni(OH)₂/N–CNTs determined by TXRF.

	Based on CO-stripping			Based on H _{upd} ^[1]				
Sample	ECSA m ² /g _{Pt}	MOR	ORR (0.9 V)	ECSA m²/g _{Pt}	MOR	ORR (0.9 V)	MOR	ORR (0.9 V)
		Specific Activity (mA/mg _{Pt})	Specific Activity (mA/mg _{Pt})	. On	Specific Activity (mA/mg _{Pt})	Specific Activity (mA/mg _{Pt})	Mass Activity (mA/mg _{Pt})	Mass Activity (mA/mg _{Pt})
10:5–Pt/Ni(OH) ₂ /N–CNTs	22	1.02	0.22	20	1.13	0.24	344	142
10:2–Pt/Ni(OH) ₂ /N–CNTs	24	1.28	0.30	24	1.30	0.31	368	191
10:1–Pt/Ni(OH) ₂ /N–CNTs	20	1.06	0.32	22	0.97	0.30	237	164
Pt/ N–CNTs	21	1.18	0.18	19	1.32	0.19	261	91
Commercial Pt/C	12	0.50	0.16	13	0.47	0.15	56	114

Table S3. Performances of all catalysts and several representative results.

 $H_{\text{upd}}{}^{\left[1\right]}$ defined as the desorption of underpotentially deposited hydrogen.