Supporting information

From monomeric complexes to double-stranded helicates constructed around *trans*- TiO_4N_2 motifs with intramolecular inter-ligand hydrogen-bonding interactions.

Georges Khalil, Laurent Barloy, Nathalie Kyritsakas, Pierre Mobian, Marc Henry

 $[Ti(L^1)_2(Pyr)_2]$

Fig 1: ¹H NMR DOSY map (CDCl₃) of $[Ti(L^1)_2(Pyr)_2]$

[Ti(L¹)₂(DHA)₂]

Fig 2: ¹H NMR DOSY map (CDCl₃) of [Ti(L¹)₂(DHA)₂]

Fig 3: ES-MS spectrum of [Ti(L¹)₂(DHA)₂].

Fig 4: ES-MS spectrum of $[Ti(L^1)_2(DHA)_2]$. Enlargement at m/z = 841. Experimental peak (top) and simulated peak for $[Ti(L^1)_2(DHA)_2] + H^+$ (bottom).

[Ti(L¹)₂(MePyr)₂]

Fig 5: ES-MS spectrum of [Ti(L¹)₂(MePyr)₂].

Fig 6: ES-MS spectrum of $[Ti(L^1)_2(MePyr)_2]$. Enlargement at m/z = 829. Experimental peak (top) and simulated peak for $[Ti(L^1)_2(MePyr)_2] + H^+$ (bottom).

Fig 7: ¹H NMR spectrum (CDCl₃) of [Ti(L¹)₂(MePyr)₂] crystals.

[Ti(L²)₂(DHA)₄]

Fig 8: ¹H NMR DOSY map (CDCl₃) of [Ti(L²)₂(DHA)₄].

Fig 9: ES-MS spectrum of [Ti(L²)₂(DHA)₄].

Fig 10: ES-MS spectrum of $[Ti(L^2)_2(DHA)_4]$. Enlargement at m/z = 1766. Experimental peak (top) and simulated peak for $[Ti(L^1)_2(DHA)_4] + H^+$ (bottom).

Fig 11: ES-MS spectrum of $[Ti(L^2)_2(DHA)_4]$. Enlargement at m/z = 1646. Experimental peak (top) and simulated peak for $[Ti(L^1)_2(DHA)_3] + H^+$ (bottom).

Fig 12: ES-MS spectrum of $[Ti(L^2)_2(DHA)_4]$. Enlargement at m/z = 1525. Experimental peak (top) and simulated peak for $[Ti(L^1)_2(DHA)_2] + H^+$ (bottom).

IR spectra, DHA, [Ti(L¹)₂(DHA)₂], [Ti(L²)₂(DHA)₄]

Fig 13: Infra-red spectra (region between 3500 cm⁻¹ and 2500 cm⁻¹) of DHA (0.1 M in toluene) (black curve), $[Ti(L^1)_2(DHA)_2]$ (blue curve) and $[Ti(L^2)_2(DHA)_4]$ (red curve).

IR spectra: MePyr, [Ti(L¹)₂(MePyr)₂], [Ti(L²)₂(MePyr)₄]

Fig 14: Infra-red spectra (region between 3500 cm⁻¹ and 2500 cm⁻¹) of MePyr (0.1 M in toluene) (blue curve), $[Ti(L^1)_2(MePyr)_2]$ (red curve) and $[Ti(L^2)_2(MePyr)_4]$ (black curve).

Fig 15: View of the molecular structure of $[Ti(L^1)_2(DHA)_2]$ evidencing the helicity of one strand and the intramolecular inter-ligand hydrogen-bonding NH•••O interactions.

Fig 16: View of the molecular structure of $[Ti(L^1)_2(MePyr)_2]$ evidencing the helicity of one strand and the intramolecular inter-ligand hydrogen-bonding NH+++O interactions.