Supporting Information

Switching on the proton transport pathway of a lanthanide metal-

organic framework by one-pot loading of tetraethylene glycol for

high proton conduction

Xi Wang, ^a Dandan Lou, ^a Xiangcheng Lu, ^a Jianbin Wu, ^a Ying Mu, ^b Yan Yan, ^b Qian Zhang ^a and Ming Bai *^a

^aMarine College, Shandong University, Weihai, Weihai 264209, People's Republic of China. Email: ming_bai@sdu.edu.cn ^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Table S1 Crystal data and structure refinement for SmHEDP-H₂O.

Table S2 Selected bond lengths and bond angles for SmHEDP-H₂O.

Fig. S1 Simulated and experimental powder X-ray diffraction (XRD) pattern of SmHEDP-H₂O.

Fig. S2 Thermogravimetric (TG) spectra of SmHEDP-H₂O and SmHEDP-TEG.

Fig. S3 IR spectra of SmHEDP-H₂O and SmHEDP-TEG in the range of 400 and 4000 cm⁻¹. The inset is the detailed IR spectra in the range of 1080 and 1260 cm⁻¹.

Fig. S4 Thermal ellipsoid plot (30% probability) and atomic labeling scheme of SmHEDP-H₂O.

Fig. S5 Hydrogen bond interaction existed in SmHEDP-H₂O (Color code: Sm, purple; P, yellow; O, red; C, green; H, white; hydrogen bond, blue).

Fig. S6 Powder X-ray diffraction (XRD) pattern of SmHEDP- H_2O (a) and SmHEDP-TEG (b) before and after proton conductivity measurements; SEM images of SmHEDP- H_2O (c) and (d) after proton conductivity measurements

Fig. S7 Water adsorption isotherms of SmHEDP-H₂O (a) and SmHEDP-TEG (b) at 298K

Empirical formula	$C_2H_{11}SmP_2O_{10}$	
Formula weight	407.40	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Orthorhombic, Pbca	
Unit cell dimensions	$a = 9.7637(8)$ Å $\alpha = 90^{\circ}$	
	$b = 9.764 \text{ Å}$ $\beta = 90^{\circ}$	
	$c = 20.5506(18)$ Å $\gamma = 90^{\circ}$	
Volume	1959.1(2) Å ³	
Z, Calculated density	8, 2.763 mg/m ³	
Absorption coefficient	6.360 mm ⁻¹	
F(000)	1560	
Crystal size	$0.21 \times 0.20 \times 0.18 \text{ mm}$	
Theta range for data collection	2.878 to 25.116°	
Limiting indices	-11≤h≤11, -6≤k<≤11, -24≤l≤24	
Reflections collected / unique	10370 / 1743 [<i>R</i> (int) = 0.0989]	
Completeness to $\theta = 28.30$	99.8 %	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	1743 / 0 / 137	
Goodness-of-fit on F^2	1.025	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0281, wR_2 = 0.0790$	
<i>R</i> indices (all data)	$R_1 = 0.0308, wR_2 = 0.0807$	
Largest diff. peak and hole	1.951 and -1.095 e. Å ⁻³	

Table S1 Crystal data and structure refinement for SmHEDP-H₂O

Bond	Bond	Bond	Bond
	Length (Å)		Length (Å)
Sm(1)-O(2)	2.323(3)	Sm(1)-O(3)	2.339(3)
Sm(1)-O(1)	2.414(3)	Sm(1)-O(5)	2.460(3)
Sm(1)-O(4)#1	2.464(2)	Sm(1)-O(4)	2.485(2)
Sm(1)-O1w	2.647(3)	Sm(1)-O2w	2.508(3)
P(1)-O(1)	1.501(3)	P(1)-O(5)	1.501(3)
P(1)-O(7)	1.580(3)	P(1)-C(1)	1.834(4)
P(2)-O(2)	1.509(3)	P(2)-O(3)	1.512(3)
P(2)-O(4)	1.539(3)	P(2)-C(1)	1.843(4)
O(6)-C(1)	1.467(4)	C(1)-C(2)	1.515(5)
Bond Angle	Value (°)	Bond Angle	Value (°)
O(2)-Sm(1)-O(3)	87.31(9)	O(2)-Sm(1)-O(1)	86.18(9)
O(3)-Sm(1)-O(1)	76.43(9)	O(2)-Sm(1)-O(5)	74.86(9)
O(3)-Sm(1)-O(5)	140.25(9)	O(1)-Sm(1)-O(5)	67.33(9)
O(2)-Sm(1)-O(4)	152.64(10)	O(3)-Sm(1)-O(4)	108.06(9)
O(1)-Sm(1)-O(4)	76.09(8)	O(5)-Sm(1)-O(4)	79.09(9)
O(2)-Sm(1)-O(4)	112.18(9)	O(3)-Sm(1)-O(4)	145.34(9)
O(1)-Sm(1)-O(4)	130.91(9)	O(5)-Sm(1)-O(4)	74.15(9)
O(4) -Sm(1)-O(4)	67.57(10)	O(2)-Sm(1)-O(2w)	134.09(9)
O(3)-Sm(1)-O(2w)	69.43(9)	O(1)-Sm(1)-O(2w)	123.09(9)
O(5)-Sm(1)-O(2w)	145.66(8)	O(4) -Sm(1)-O(2w)	73.24(9)
O(4)-Sm(1)-O(2w)	76.71(9)	O(2)-Sm(1)-O(1w)	67.03(9)
O(3)-Sm(1)-O(1w)	72.29(9)	O(1)-Sm(1)-O(1w)	139.19(9)
O(5)-Sm(1)-O(1w)	128.11(9)	O(4) - Sm(1) - O(1w)	138.57(9)
O(4)#1-Sm(1)-O(1w)	88.77(9)	O(2w)-Sm(1)-O(1w)	68.32(9)
O(1)-P(1)-O(5)	115.07(16)	O(1)-P(1)-O(7)	106.15(15)
O(5)-P(1)-O(7)	109.79(15)	O(1)-P(1)-C(1)	109.89(15)
O(5)-P(1)-C(1)	109.05(15)	O(7) - P(1) - C(1)	106.54(17)
O(2)-P(2)-O(3)	115.23(16)	O(2)-P(2)-O(4)	112.30(15)
O(3) -P(2)-O(4)	110.21(14)	O(2)-P(2)-C(1)	104.21(16)
O(3)-P(2)-C(1)	108.30(17)	O(4)-P(2)-C(1)	105.92(16)
P(1)-O(1)-Sm(1)	139.78(15)	P(2)-O(2)-Sm(1)	151.26(17)
P(2)-O(3)-Sm(1)	144.80(16)	P(2)-O(4)-Sm(1)	122.95(13)
O(6)-C(1)-P(2)	107.6(2)	O(6)-C(1)-C(2)	107.2(3)
O(6)-C(1)-P(1)	109.1(2)	C(2)-C(1)-P(2)	107.6(2)
P(2)-C(1)-P(1)	108.2(2)	C(2)-C(1)-P(1)	112.3(3)

Table S2 Selected bond lengths and bond angles for SmHEDP-H₂O

Fig. S1 Simulated and experimental powder X-ray diffraction (XRD) pattern of $SmHEDP-H_2O$.

Fig. S2 Thermogravimetric (TG) spectra of SmHEDP-H₂O and SmHEDP-TEG.

Fig. S3 IR spectra of SmHEDP-H₂O and SmHEDP-TEG in the range of 400 and 4000 cm^{-1} . The inset is the detailed IR spectra in the range of 1080 and 1260 cm^{-1} .

Fig. S4 Thermal ellipsoid plot (30% probability) and atomic labeling scheme of $SmHEDP-H_2O$.

Fig. S5 Hydrogen bond interaction existed in SmHEDP-H₂O (Color code: Sm, purple; P, yellow; O, red; C, green; H, white; hydrogen bond, blue).

Fig. S6 Powder X-ray diffraction (XRD) pattern of SmHEDP-H₂O (a) and SmHEDP-TEG (b) before and after proton conductivity measurements; SEM images of SmHEDP-H₂O (c) and (d) after proton conductivity measurements

Fig. S7 Water adsorption isotherms of SmHEDP-H $_2O$ (a) and SmHEDP-TEG (b) at 298K