Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Coordination driven self-assembly of [2+2+2] molecular squares: synthesis, crystal structures, catalytic and luminescence properties

Vijay Gupta^a and Sanjay K. Mandal^a

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali (Punjab) 140306, INDIA

> Author for correspondence: Prof. Sanjay K. Mandal, E-mail: sanjaymandal@iisrmohali.ac.in.

Table of Contents

Item	Description	Page No.
Figures S1-S2	Labelled structure of the molecular squares 1 and 4.	S 3
Figures S3-S4	Bifurcated Intramolecular Hydrogen bonding forming six-membered ring in 1 and 4.	S4
Figure S5	Packing diagram of the molecular squares in crystals structures of 1 and 5.	S5
Figures S6-S8	Labelled structure of the molecular squares 5 , 9 and 10 .	S6-S7
Figures S9-S11	Bifurcated Intramolecular Hydrogen bonding forming six-membered ring in 5 , 9 and 10 .	S7-S8
Figures S12-S14	FTIR spectra of the ligands and molecular squares.	S9-S10
Figure S15	PXRD patterns of the as synthesized molecular squares compared with the simulated	S11
	powder patterns obtained from the single crystal structures of 1, 4, 5, 9 and 10.	
Figure S16	PXRD patterns of the as synthesized samples of 1-10 compared to the simulated	S12
	powder patterns obtained from the single crystal structures of 1 and 5.	
Figures S17-S18	PXRD patterns of 1-10 after socking in different solvents.	S13-S14
Figure S19	TGA scans for 1-10 .	S14
Figure S20	Example of integration in the ¹ H-NMR spectrum for the determination of	S15
	Knoevenagel condensation reaction of benzaldehyde with malononitrile.	
Figure S21	Plot of % conversion versus catalyst amount and time for the Knoevenagel	S15
	condensation reaction of benzaldehyde and malononitrile catalysed by 1 and 5.	
Figure S22	Conversion for Knoevenagel condensation reaction of benzaldehyde and	S16
	malononitrile catalysed by 1-10.	
Figures S23-S50	¹ H and ¹³ C NMR spectra of 14 products in Table 2.	S16-S30
Figures S51-S53	Recyclability and heterogeneous catalysis test of 1 and 5 for the Knoevenagel	S30-S31
	condensation reaction.	
Figure S54	Absorption spectra of the ligands and molecular squares.	S32
Figure S55	Emission spectra of 4 and 10 compared with the respective carboxylic acid ligands.	S 32
Figure S56	Emission spectra of 4 and 10 in different solvents.	S33
Figure S57	Stern-Volmer (SV) plot of 4 and 10 for NB.	S34
Figures S58-S59	Change in emission spectra of 4 and 10 upon incremental addition of different nitro	\$34-\$35
	analytes.	
Figures S60-S62	Stern-Volmer (SV) plots of 4 and 10 for different nitro analytes.	S36-S37
Figure S63	Comparison of 3D Stern-Volmer plot of different nitro analytes for 4 and 10 .	S 37
Figure S64	PXRD patterns of 4 and 10 recorded before and after the sensing experiments for	S38
	different nitro-analytes.	
Table S1	Selected bond lengths (Å) and angles (°) for 1 , 4 , 5 , 9 and 10 .	S39-S40
Table S2	Hydrogen bonding parameters for 1 , 4 , 5 , 9 and 10 .	S41
Table S3	Approximate size of the nitro-analytes.	S42

Fig. S1 Structure of molecular square 1 with nonhydrogen atoms labelled; symmetry related atoms are designated with a '.

Fig. S2 Structure of molecular square 4 with nonhydrogen atoms labelled; symmetry related atoms are designated with a '.

Fig. S3 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the carboxylate oxygen atom in 1 forming two six membered rings $R_1^{1}(6)$.

Fig. S4 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the carboxylate oxygen atom in 4 forming two six membered rings $R_1^{1}(6)$.

Fig. S5 Packing diagram of the molecular squares in 1 (a) and 5 (b), viewing along the a-axis. All hydrogen atoms are omitted for clarity.

Fig. S6 Structure of molecular square 5 with nonhydrogen atoms labelled; symmetry related atoms are designated with a '.

Fig. S7 Structure of molecular square 9 with nonhydrogen atoms labelled; symmetry related atoms are designated with a '.

Fig. S8 Structure of molecular square 10 with nonhydrogen atoms labelled; symmetry related atoms are designated with a '.

Fig. S9 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the carboxylate oxygen atom in 5 forming two six membered rings $R_1^{1}(6)$.

Fig. S10 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the carboxylate oxygen atom in 9 forming two six membered rings $R_1^{1}(6)$.

Fig. S11 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the carboxylate oxygen atom in 10 forming two six membered rings $R_1^{1}(6)$.

Fig. S12 FTIR spectra of the ligands H₂L1, H₂L2.

Fig. S13 FTIR spectra of the molecular squares 1-4.

Fig. S14 FTIR spectra of the molecular squares 5-10.

Fig. S15 PXRD patterns of the as-synthesized molecular squares 1 (a), 4 (b), 5 (c), 9 (d) and 10 (e) compared to the corresponding simulated powder patterns obtained from single crystal structures.

Fig. S16 Powder X-ray diffraction patterns of the as synthesized samples of (a) **1-4** and (b) **5-10** compared to the simulated powder patterns obtained from the single crystal structures of **1** and **5**, respectively.

Fig. S17 PXRD pattern of **1-6** after socking in different solvents compared with their as synthesized powder pattern.

Fig. S18 PXRD pattern of 7-10 after socking in different solvents compared with their as synthesized powder pattern.

Fig. S19 TGA scans for 1-4 (left) and 5-10 (right).

Fig. S20 Example of integration in the ¹H NMR spectrum for the determination of conversion in Knoevenagel condensation reaction of benzaldehyde with malononitrile (Table 1, entry 1)

Calculation of the product yield in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by 1

Total amount of compounds at the end (see Fig. S20): Unreacted bezaldehyde (10.05 ppm) + 2-benzylidenemalononitrile (7.81 ppm) = 0.07 + 1.00 = 1.07Yield of 2-benzylidenemalononitrile = (1/1.07) * 100 = 93.45 %.

Fig. S21 Plot of % conversion versus catalyst amount (left) and time (right) for the Knoevenagel condensation reaction of benzaldehyde and malononitrile catalysed by 1 and 5.

Fig. S22 % Conversion for the Knoevenagel condensation reaction of benzaldehyde and malononitrile catalysed by 1-10.

Fig. S23 ¹H NMR spectrum of 2-(4-fluorobenzylidene)malononitrile.

Fig. S25 ¹H NMR spectrum of 2-(4-chlorobenzylidene)malononitrile.

Fig. S27 ¹H NMR spectrum of 2-(4-bromobenzylidene)malononitrile.

Fig. S29 ¹H NMR spectrum of 2-(4-methylbenzylidene)malononitrile.

Fig. S31 ¹H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile.

Fig. S33 ¹H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile.

Fig. S35 ¹H NMR spectrum of 2-(3-chlorobenzylidene)malononitrile.

Fig. S37 ¹H NMR spectrum of 2-(3-bromobenzylidene)malononitrile.

Fig. S39 ¹H NMR spectrum of 2-(3-methoxybenzylidene)malononitrile.

Fig. S41 ¹H NMR spectrum of 2-(3-nitrobenzylidene)malononitrile.

Fig. S45 ¹H NMR spectrum of 2-(pyridin-3-ylmethylene)malononitrile.

Fig. S47 ¹H NMR spectrum of 2-(furan-2-ylmethylene)malononitrile.

Fig. S49 ¹H NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile.

Fig. S50 ¹³C NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile.

Fig. S51 Conversion for three consecutive cycles of Knoevenagel condensation reaction of benzaldehyde and malononitrile catalysed by 1 and 5.

Fig. S52 FTIR spectra (top) and PXRD pattern (bottom) of 1 and 5 taken before and after catalysis experiments.

Fig. S53 Progress of the reaction with time in presence of catalysts **1** and **5** (solid lines) and after separating the catalyst from the reaction mixture (dotted lines).

Fig. S54 Absorption spectra of 1-4 and H₂L1 (left) and 5-10 and H₂L2 (right)

Fig. S55 Emission spectra of 4 (left) and 10 (right) compared with the free ligands H₂L1 and H₂L2 respectively.

Fig. S56 Emission spectra of 4 (top) and 10 (bottom) in different solvents.

Fig. S57 Stern-Volmer (SV) plot for NB of 4 (left) and 10 (right). The relative fluorescence intensities are linear with NB concentration in the range of 0 - 0.035 mM, $I_0/I = 1 + 84.026$ [NB] (R² = 0.998) for 4 and $I_0/I = 1 + 95.032$ [NB] (R² = 0.992) for 10.

Fig. S58 Change in emission spectra of **4** dispersed in an aqueous medium upon incremental addition of (a) 1,3-DNB solution (2 mM), (b) 1,4-DNB solution (2 mM) and (c) 2,4,6-TNT solution (2 mM).

Fig. S59 Change in emission spectra of **10** dispersed in an aqueous medium upon incremental addition of (a) 1,3-DNB solution (2 mM), (b) 1,4-DNB solution (2 mM) and (c) 2,4,6-TNT solution (2 mM).

Fig. S60 Stern-Volmer (SV) plot for 1,3-DNB of 4 (left) and 10 (right). The relative fluorescence intensities are linear with 1,3-DNB concentration in the range of 0 - 0.035 mM, $I_0/I = 1 + 11.029[1,3-DNB]$ (R² = 0.998) for 4 and $I_0/I = 1 + 8.110[1,3-DNB]$ (R² = 0.999) for 10.

Fig. S61 Stern-Volmer (SV) plot for 1,4-DNB of **4** (left) and **10** (right). The relative fluorescence intensities are linear with 1,3-DNB concentration in the range of 0 - 0.035 mM, $I_0/I = 1 + 9.268[1,4-DNB]$ (R² = 0.999) for **4** and $I_0/I = 1 + 8.563[1,4-DNB]$ (R² = 0.999) for **10**.

Fig. S62 Stern-Volmer (SV) plot for 2,4,6-TNT of 4 (left) and 10 (right). The relative fluorescence intensities are linear with 2,4,6-TNT concentration in the range of 0 - 0.035 mM, $I_0/I = 1 + 18.624[2,4,6-TNT]$ (R² = 0.999) for 4 and $I_0/I = 1 + 11.641[2,4,6-TNT]$ (R² = 0.999) for 10.

Fig. S63 A comparison of 3D Stern-Volmer plots of different nitro analytes (left) for 4 and (right) for 10.

Fig. S64 PXRD patterns of (a) 4 and (b) 10 recorded before and after the sensing experiments for different nitroanalytes.

			1
Mn1-O5	2.2371(12)	Mn1-N2	2.4091(13)
Mn1-O4'	2.1354(12)	Mn1-O1	2.1395(12)
Mn1-N1	2.2809(14)	Mn1-N3	2.2647(14)
O5-Mn1-N2	155.35(5)	O5-Mn1-N1	86.62(5)
O5-Mn1-N3	92.18(5)	O4'-Mn1-O5	94.73(5)
O4'-Mn1-O1	89.92(5)	O4'-Mn1-N2	100.04(5)
O4'-Mn1-N1	89.71(5)	O4'-Mn1-N3	173.03(5)
O1-Mn1-O5	90.40(5)	O1-Mn1-N2	109.12(5)
O1-Mn1-N3	89.11(5)	O1-Mn1-N1	176.95(5)
N3-Mn1-N2	73.79(5)	N1-Mn1-N2	73.92(5)
N3-Mn1-N1	91.61(5)		
Symmetry coo	des:		
(#1) 'x, y, z',	(#2) '-x, -y, -z'		

Table S1 Selected bond lengths (\AA) and bond angles (degree) in 1, 4, 5, 9 and 10.

			4	
Cd1-O1	2.121(2)	Cd1-O3	2.117(2)	
Cd1-N1	2.314(3)	Cd1-O4	2.236(2)	
Cd1-N3	2.219(3)	Cd1-N2	2.209(3)	
O1-Cd1-O4	90.52(9)	O1-Cd1-N1	110.30(10)	
O1-Cd1-N2	88.91(10)	O1-Cd1-N3	177.31(10)	
O3-Cd1-O1	89.13(10)	O3-Cd1-O4	96.60(9)	
O3-Cd1-N1	101.13(9)	O3-Cd1-N2	172.06(10)	
O3-Cd1-N3	90.52(10)	O4-Cd1-N1	152.62(9)	
N2-Cd1-O4	91.11(9)	N2-Cd1-N1	72.39(9)	
N2-Cd1-N3	91.80(10)	N3-Cd1-O4	86.86(10)	
N3-Cd1-N1	72.39(10)			
Symmetry coo	Symmetry codes:			
(#1) 'x, y, z',	(#2) '-x, -y, -z'			

			5
Mn1-O1	2.1178(16)	Mn1-O4'	2.1293(16)
Mn1-O6	2.2262(16)	Mn1-N1	2.268(2)
Mn1-N2	2.3927(19)	Mn1-N3	2.2398(19)
O1-Mn1-O4'	88.27(7)	O1-Mn1-N1	86.84(7)
O1-Mn1-O6	91.33(6)	O1-Mn1-N2	98.75(6)
O1-Mn1-N3	172.13(6)	O4'-Mn1-O6	89.72(6)
O41-Mn1-N1	174.78(7)	O4'-Mn1-N2	109.86(7)
O41-Mn1-N3	89.52(7)	O6-Mn1-N1	88.56(7)
O6-Mn1-N2	158.10(6)	O6-Mn1-N3	96.22(6)
N1-Mn1-N2	72.75(7)	N3-Mn1-N1	95.57(7)
N3-Mn1-N2	74.92(7)		
Symmetry cod	les:		

(#1) 'x, y, z', (#2) '-x, -y, -z'

			9
Zn1-O1	2.155(2)	Zn1-O2	2.060(2)
Zn1-O5	2.076(2)	Zn1-N1	2.128(3)
Zn1-N2	2.334(3)	Zn1-N3	2.183(3)
O1-Zn1-N2	160.80(9)	O5-Zn1-O1	91.41(10)
O1-Zn1-N3	88.50(11)	O5-Zn1-N1	89.77(11)
O5-Zn1-N2	106.27(10)	O5-Zn1-N3	173.08(10)
O2-Zn1-O1	93.78(10)	O2-Zn1-O5	86.53(11)
O2-Zn1-N1	170.47(10)	O2-Zn1-N2	94.82(9)
O2-Zn1-N3	86.58(11)	N1-Zn1-O1	95.08(11)
N1-Zn1-N2	77.79(10)	N1-Zn1-N3	97.14(11)
N3-Zn1-N2	74.93(10)		
Symmetry codes:			
(#1) 'x, y, z',	(#2) '-x, -y, -z'		

10				
Cd1-O1	2.235(2)	Cd1-O6	2.364(2)	
Cd1-O4'	2.238(2)	Cd1-N1	2.348(2)	
Cd1-N2	2.473(2)	Cd1-N3	2.327(2)	
O1-Cd1-O41	87.20(10)	O1-Cd1-N1	174.15(9)	
O1-Cd1-O6	89.55(8)	O1-Cd1-N2	109.99(8)	
O1-Cd1-N3	90.10(10)	O4'-Cd1-O6	89.99(8)	
O4'-Cd1-N1	86.97(9)	O4'-Cd1-N2	100.06(8)	
O4'-Cd1-N3	171.38(9)	O6-Cd1-N2	158.28(8)	
N1-Cd1-O6	89.96(8)	N1-Cd1-N2	71.58(8)	
N3-Cd1-O6	98.18(8)	N3-Cd1-N1	95.75(9)	
N3-Cd1-N2	73.20(8)			
Symmetry codes:				
(#1) 'x, y, z',	(#2) '-x, -y, -z'			

D-H-A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
			1	
O5-H5A-O3'	0.89	1.89	2.6308(17)	140.0
O5-H5B-O2	0.89	1.90	2.6616(18)	143.7
D-H-A	d(D-H)/A	d(H-A)/A	d(D-A)/A	D-H-A/°
			4	
O4-H4A-O5	0.87	1.81	2.484(3)	135.8
O4-H4B-O2	0.85	1.79	2.512(3)	141.8
			5	
O6-H6A-O3'	0.88	1.94	2.702(2)	143.9
O6-H6B-O2	0.88	1.91	2.681(2)	145.8
			0	
01.111.4.04	0.00	1.00	9	170.5
01-H1A-O4	0.89	1.80	2.675(4)	170.5
O1-H1B-O3'	0.84	1.84	2.661(4)	165.5
			10	
O6-H6A-O3'	0.88	1.94	2.696(3)	143.2
O6-H6B-O2	0.88	1.99	2.726(3)	140.7

Table S2 Hydrogen bonding parameters in 1, 4, 5, 9 and 10.

Table S3 Approximate size of the nitro-analytes.

Nitro-analytes	Approximate size	Number of
	(L X W) Å	Nitro Groups
Nitrobenzene (NB)	³² ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1
1,4-dinitrobenzene (1,4-DNB)	9.7 X 6.4	2
1,3-dinitrobenzene (1,3-DNB)	9.3 X 7.4	2
2,4,6-trinitrotoluene (TNT)	9.8 X 7.7	3