Supporting information

Selenization of NiMn layered double hydroxide with enhanced electrocatalytic activity for oxygen evolution

Jing Du,*ab Zehua Zou,a Ailing Yu,a and Cailing Xua

^aState Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

*Corresponding author. E-mail: dujing@lzu.edu.cn

Fig. S1 The energy dispersive X-ray spectrum obtained from the selected square in the TEM

image.

Fig. S2 N_2 adsorption and desorption curves of NiMn LDH and the selenization of NiMn

Fig. S3 The cyclic voltammetry (CV) curves of the catalysts with different Ni/Mn ratio.

Fig. S4 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for (a) NMS and (b) NiMn LDH in 1.0 M KOH.

Fig. S5 Ni 2p spectra of NMS sample after OER measurements.

Fig. S6 Nyquist plots of Ni(OH)₂ and NiMnLDH.

Fig. S7 CV curves of selenized NiMn LDH (NMS) and selenized Ni(OH)₂ (NS) in 1.0 M

KOH at a potential sweep rate of 5 mV/s.

Table S1. Comparison of the OER activity of the NMS to that of nickel-based catalysts

Catalysts	Electrolyte	J _{geo} (current density	Tafel slope	Substrate	Reference
		in mA cm ⁻² @	(mV dec ⁻¹)		
		overpotential in mV)			
Ni _{1.12} Fe _{0.49} Se ₂	1 M KOH	10@η=227	37.9	GC	33
Ni ₃ FeN/N-G	1 M KOH	10@η=250	45	GC	34
NMS	1 М КОН	10@η=280	71	GC	This work
Ni ₂ P@C/G	1 M KOH	10@η=285	44	GC	35
CoNi ₂ Se ₄	1 M KOH	10@η=300	53	GC	18
Ni ₃ N/NC	1 M KOH	10@η=310	/	GC	36
rGO@CoNiO _x	1 M KOH	10@η=320	45	GC	37
CoNi _{0.37} -CN	1 M KOH	10@η=320	71	GC	38
Ni _{0.9} Fe _{0.1} PS ₃	1 M KOH	20@η=329	69	GC	39
NiMn-LDH	1 M KOH	10@η=350	40	GC	15
Ni/Mo ₂ C-PC	1 M KOH	10@ η=36 8	/	GC	40

coated on glassy carbon reported in the literature.