Supporting Information for

Catechol oxidase activity of comparable dimanganese and dicopper complexes

Adriana M. Magherusan, Daniel N. Nelis, Brendan Twamley, Aidan R. McDonald*

School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin

2, Ireland

E-mail: aidan.mcdonald@tcd.ie

100-		001 3	129	080 2512 1	107,3253	1185.	4644										1.1	8e+004
%	719.1633	501.2	120			J.L.	215.4889		15	70.6774	613.6987							
600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	19	00	2000	210	00	2200
Minimum: Maximum:				5.0	10.0	2	1.5 200.0											
Mass	Calc	. Mas	S	mDa	PPM	Ι	BE	i-FIT		i-FIT	(Norm)	Form	ula					
989.2513	989.3	2470		4.3	4.3	2	.4.5	55.4		0.0		C45	H52	N10	07	Cl	Mn2	

Figure S1. Maldi-ToF mass spectrometry showing formation of complex 1.

	1051 2595								2.93e+003
100 92 %	7.2375	1216.4	720	1571.673	5 1642.7076				
800 90	0 1000 1100	1200 130	0 1400	1500 160	0 1700 18	800 1900 200	0 2100	2200 230	0 2400 2500
Minimum: Maximum:		5.0	5.0	-1.5 500.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
1051.2595	1051.2626	-3.1	-2.9	28.5	50.3	0.0	C50 H54	N10 07	Cl Mn2

Figure S2. Maldi-ToF mass spectrometry showing formation of complex 2.

Figure S3. ESI-MS showing formation of complex 3.

Figure S4. ESI-MS showing formation of complex 4.

100 % 0 780	797.0705 813.3804	835.0790 ۲۰۰۰-۲۰۰۰ البلام 840	41.4476 867.4 77777777777777777777777777777777777	89 1878 883.4707 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	95.1058 . 897.103 	⁶ 913.2332 1/11/1/10/11/11 920	945.53	999 777777 96	97- 	4.5783 ⁹ 	99.58 ****	5 1001.5 05 1000	:23e+002 :972 :777 m/z
Minimum: Maximum:		5.0	20.0	-1.5			1941.5 A					0.000	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula				
893.1071	893.1049	2.2	2.5	24.5	73.1	0.0		C37	H36	N10	07	Cl	Cu2

Figure S5. ESI-MS showing formation of complex 5.

						95	7.1204								2	2.35e+003
100 %	35.0800	857.1663	1686 89	5.1041	911.2281	935.563	7 959.1	194 5641	1001.595	5 1013.18	24 1045	.3136		108	9.3209)
820	840	860	880	900	920	940	960	980	1000	1020	1040	10	060	1080	11	100
Minimum: Maximum:			5.0	20	0.0	-1.5 500.0										
Mass	Calc.	Mass	mDa	PF	M	DBE	i-FI	т	i-FIT	(Norm)	Form	ula				
955.1213	955.1	205	0.8	0.	8	28.5	79.5		0.0		C42	H38	N10	07	Cl	Cu2

Figure S6. ESI-MS showing formation of complex 6.

Figure S7. ¹H NMR of complex 5 in CD₃CN.

Figure S8. ¹H NMR of complex 6 in CD₃CN.

Figure S9. ATR-FTIR spectra of manganese complexes 1 (black) and 2 (red).

Figure S10. ATR-FTIR spectra of manganese complexes 3 (black) and 4 (red).

Figure S11. ATR-FTIR spectra of copper complexes 5 (black) and 6 (red).

Figure S12. ATR-FTIR spectrum of HPTB ligand.

Figure S13. ATR-FTIR of N-Et-HPTB ligan.

Comp	lexes	11	2	3 ²	4	5	6
Average	M-N _{amine} (Å)	2.42	2.39	2.45	2.43	2.13	2.12
(M = metal)	M-N _{benz} (Å)	2.13	2.13	2.18	2.13	2.08	2.08

 Table S1. Comparison of average bond lengths in complexes 1-6.

X-Ray Diffraction Methods and Structure Refinements

Complex 2. A specimen of $C_{56}H_{63}Cl_2Mn_2N_{13}O_{11}$, approximate dimensions 0.050 mm x 0.075 mm x 0.080 mm, was used for the X-ray crystallographic analysis using a MiTeGen micromount. Bruker APEX software was used to collect, correct for Lorentz and polarization effects and reduce the data.³ One perchlorate molecule was disordered. This disorder was modelled with constraints and restraints (DFIX, EADP) yielding a three-positional model with occupancies of 0.38217, 0.39796 and 0.21986.

Complex 4. A specimen of $C_{46}H_{43}Cl_2Mn_2N_{12}O_{11}$, approximate dimensions 0.090 mm x 0.110 mm x 0.180 mm, was used for the X-ray crystallographic analysis using a MiTeGen micromount. Bruker APEX software was used to correct for Lorentz and polarization effects. ³ Three benzimidazoles modelled as disordered as well as two linking carbons C20, C36 and the bridge carbons C22 and C25. These were modelled with 80:20% occupancy with restraints (DFIX, SADI, FLAT) and constraints (EADP, AFIX 66). Both perchlorates were also modelled in two positions with 58% and 67% major occupancy. Constraints (EADP, rigid model) used. The molecule was refined as a racemic twin with a refined twin ratio of 0.49(5).

Complex 5. A specimen of $C_{42}H_{41.50}Cl_2Cu_2N_{11.50}O_{11.50}$, approximate dimensions 0.070 mm x 0.110 mm x 0.340 mm, was used for the X-ray crystallographic analysis using a MiTeGen micromount. Bruker APEX software was used to correct for Lorentz and polarization effects. ³ There were 4 partially occupied MeCN molecules in asymmetric unit. N51, 43; N54, 62; N59, 31; N62, 14% occupied. Total = 1.5 MeCN per asymmetric unit. One perchlorate Cl1/Cl3 is disordered over two positions with occupancies of 54:46%. Cl3 perchlorate shares space with a half-occupied diethyl ether molecule. Restraints (DFIX, SADI, ISOR, SUMP for MeCN occupancy) and constraints (EADP) were used in the model. **Complex 6**. A specimen of $C_{45}H_{42.50}Cl_2Cu_2N_{11.50}O_{11}$, approximate dimensions 0.140 mm x 0.190 mm x 0.370 mm, was used for the X-ray crystallographic analysis using a MiTeGen micromount. Bruker APEX software was used to collect, correct for Lorentz and polarization effects and reduce the data.³ One perchlorate was modelled in two positions with a refined occupancy of 54:46% with one shared oxygen atom O68. Constraints were used to model this disorder (EADP). Restraints were used in the model of the free solvent MeCN groups (SADI, ISOR) one of which is only half occupied.

	(2)	(4)	(5)	(6)
Name:	$[Mn_2(O_2CPh)(N-Et-HPTB)](ClO_4)_2$	$[Mn_2(O_2CPh)(HPTB)](ClO_4)_2$	$[Cu_2(O_2CCH_3)(HPTB)](ClO_4)_2$	$[Cu_2(O_2CPh)(HPTB)](ClO_4)_2$
Empirical formula	$C_{56}H_{63}Cl_2Mn_2N_{13}O_{11}$	$C_{46}H_{43}Cl_2Mn_2N_{12}O_{11}$	$C_{42}H_{45.50}Cl_2Cu_2N_{11.50}O_{11.50}$	$C_{45}H_{42.50}Cl_2Cu_2N_{11.50}O_{11}$
Formula weight	1274.97	1120.70	1093.38	1118.38
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Wavelength (Å)	1.54178	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	Pī	Cc	P1	Cc
a (Å)	13.0800(4)	21.3934(11)	12.8864(8)	20.4647(8)
b (Å)	14.4180(5)	21.7926(11)	13.1530(8)	21.8424(8)
c (Å)	17.9989(5)	11.6260(6)	16.6060(11)	11.5893(4)
α (°)	73.3874(19)	90	80.111(2)	90
β (°)	78.3545(18)	115.314(3)	71.250(2)	111.2580(10)
γ (°)	66.9439(18)	90	61.8690(10)	90
Volume (Å ³)	2977.27(17)	4899.8(4)	2349.7(3)	4827.9(3)
Ζ	2	4	2	4
Density (calc, Mg/m ³)	1.422	1.519	1.545	1.539
$\rho (\text{mm}^{-1})$	4.860	0.698	1.092	1.064
F(000)	1324	2300	1124	2292
Crystal size (mm ³)	0.080 x 0.075 x 0.050	0.18 x 0.11 x 0.09	0.34 x 0.11 x 0.07	0.37 x 0.19 x 0.14
Index ranges	-15≤h≤15, -17≤k≤17, -21≤l≤21	-26≤h≤26, -26≤k≤26, -14≤l≤14	-16≤h≤16, -16≤k≤16, -20≤l≤20	-25≤h≤25, -27≤k≤27, -14≤l≤14
Reflections collected	56368	68365	55045	41111
Independent reflections	10484 [R(int) = 0.0970]	9586 [R(int) = 0.0788]	9654 [R(int) = 0.0227]	10007 [R(int) = 0.0394]
Absorption correction	Numerical	Semi-empirical from	Semi-empirical from equivalents	Semi-empirical from
		equivalents		equivalents
Max. and min. transmission	0.9694 and 0.7652	0.7455 and 0.6867	0.7454 and 0.6674	0.7454 and 0.7002
Data / restraints /	10484 / 31 / 787	9586 / 27 / 544	9654 / 35 / 690	10007 / 34 / 656
parameters				
Goodness-of-fit on F ²	1.038	1.120	1.042	1.059
R indices $[I > 2\sigma(I)]$	R1 = 0.0593, WR2 = 0.1470	R1 = 0.0766, WR2 = 0.1598	R1 = 0.0658, WR2 = 0.1727	R1 = 0.0427, WR2 = 0.1082
R indices (all data)	R1 = 0.0876, wR2 = 0.1665	R1 = 0.0977, WR2 = 0.1703	R1 = 0.0713, $wR2 = 0.1770$	R1 = 0.0487, WR2 = 0.1123
Flack Parameter	-	0.49(5)	-	0.276(15)
Largest diff. peak and	0.531 and -0.702	0.722 and -0.642	2.020 and -2.020	0.866 and -0.724
hole $(e.Å^{-3})$				
CCDC no.	1476678	1822648	1822647	1822646

Figure S14. Overlapping structure of Cu_2^{II} complexes **5** (grey wireframe) and **6** (blue wireframe).

Cyclic Voltammograms of Complexes 1-6

The oxidation potentials for complexes 1-4 and reduction potentials for complexes 5-6 were measured by CV using a glassy carbon working electrode in acetonitrile solution containing $0.1 \text{ M NBu}_4\text{PF}_6$ as the supporting electrolyte. The counter electrode used was platinum while the reference electrode was AgNO₃.

Figure S15. Cyclic voltammogram of complex 1 (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 100 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S16. Cyclic voltammogram of complex 2 (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 100 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S17. Cyclic voltammogram of complex 3 (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 100 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S18. Cyclic voltammogram of complex 4 (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 50 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S19. Cyclic voltammogram of complex 5 (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 50 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S20. Cyclic voltammogram of complex **6** (1 mM) in acetonitrile containing NBu_4PF_6 (0.1 M) as supporting electrolyte at 50 mV/s. The initial scan voltammogram of the first cycle was done from negative to positive (initial potential 0.2 V vs SCE).

Figure S21. Electronic absorption spectral changes showing formation of 3,5-DTBQ (blue trace) after addition of 3,5-DTBC (25 equivalents, 50 μ l) to complex 1 (0.1 mM, black trace) in acetonitrile at 25 °C.

Figure S22. Electronic absorption spectral changes showing formation of 3,5-DTBQ (purple trace) after addition of 3,5-DTBC (25 equivalents, 50 μ l) to complex **3** (0.1 mM, black trace) in acetonitrile at 25 °C.

Figure S23. Electronic absorption spectral changes showing formation of 3,5-DTBQ (green trace) after addition of 3,5-DTBC (25 equivalents, 50 μ l) to complex **4** (0.1 mM, black trace) in acetonitrile at 25 °C.

Figure S24. Electronic absorption spectral changes showing formation of 3,5-DTBQ (blue trace) after addition of 3,5-DTBC (25 equivalents, 50 μ l) to complex **5** (0.1 mM, black trace) in acetonitrile at 25 °C.

Figure S25. Electronic absorption spectral changes showing formation of 3,5-DTBQ (red trace) after addition of 3,5-DTBC (25 equivalents, 50 μ l) to complex **6** (0.1 mM, black trace) in acetonitrile at 25 °C.

Figure S26. Dependence of the first order reaction rate of the first (black trace) and second phases (red trace) on 3,5-DTBC concentrations for complexes **5** (left) and **6** (right).

Figure S27. Plot of absorbance at 400 nm versus time for Mn_2^{II} complex 1.

Figure S28. Plot of absorbance at 400 nm versus time for Mn^{II}_{2} complex 2.

Figure S29. Plot of absorbance at 400 nm versus time for Mn^{II}_{2} complex 3.

Figure S30. Plot of absorbance at 400 nm versus time for Mn^{II}_{2} complex 4.

Figure S31. Expansion of Figure 7, plot of absorbance at $\lambda_{max} = 400$ nm versus time for the reaction between Mn^{II}₂ complexes 1 (black trace), 2 (red trace), 3 (blue trace), and 4 (pink trace) and 25 equivalents 3,5-DTBC in acetonitrile.

Comple	ex 1	Comple	x 2	Complex 4			
[3,5-DTBC] (M)	Rate constant	[3,5-DTBC] (M)	Rate constant	[3,5-DTBC]	Rate constant		
	(s ⁻¹)		(s ⁻¹)	(M)	(s ⁻¹)		
2.5*10-4		5*10-4		5*10-4			
1 st phase	1.9*10 ⁻³	First phase	2.65*10-3	First phase	6.13*10 ⁻³		
Second phase	4*10-4	Second phase	1.33*10-4	Second phase	2.4*10-4		
Third phase	3.5*10-4	Third phase	5.4*10-4	Third phase	4.6*10-4		
5*10-4		8*10-4		8*10-4			
First phase	2.05*10-3	First phase	2.1*10-3	First phase	6.27*10-3		
Second phase	6.2*10-4	Second phase	2.25*10-4	Second phase	2.8*10-4		
Third phase	3.6*10-4	Third phase	5.1*10-4	Third phase	4.8*10-4		
8*10-4		1.25*10-3		1.25*10-3			
First phase	2.5*10-3	First phase	2.2*10-4	First phase	5.9*10-3		
Second phase	7.4*10-4	Second phase	2.8*10-4	Second phase	3.6*10-4		
Third phase	3.9*10-4	Third phase	4.8*10-4	Third phase	3.11*10-4		
		2.25*10-3		2.25*10-3			
		First phase	2.6*10-3	First phase	5.8*10-3		
		Second phase	3.35*10-4	Second phase	4.1*10-4		
		Third phase	3.6*10-4	Third phase	2.8*10-4		

Table S3. Approximate (**estimated**) rate constant values of the three phases of reaction for Mn^{II}_{2} complexes 1, 2 and 4.

Figure S32. Plot of first order approximate reaction rates of the second phase of the reaction of complex **2** (0.1 mM) against 3,5-DTBC concentrations. All measurements were carried out in acetonitrile at 25 °C.

References

- 1. A. M. Magherusan, A. Zhou, E. R. Farquhar, M. Garcia-Melchor, B. Twamley, L. Que, Jr. and A. R. McDonald, *Angew. Chem. Int. Ed. Engl.*, 2018, **57**, 918-922.
- 2. P. J. Pessiki, S. V. Khangulov, D. M. Ho and G. C. Dismukes, *J. Am. Chem. Soc.*, 1994, **116**, 891-897.
- 3. Bruker, APEX2 Ver. 2014.11-0, Bruker AXS Inc., Madison, WI, USA., 1-142.