Supporting Information for

Microporous 2D indium metal-organic frameworks for selective CO₂ capture and their application in the catalytic CO₂-cycloaddition of epoxides

Yuan-Han Li,^a Sue-Lein Wang,^{*a,b} Yu-Chia Su,^c Bao-Tsan Ko^{*b,c} Chen-Yen Tsai^b and Chia-Her Lin^{*b,d}

^aDepartment of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan ^bDepartment of Chemistry, Chung-Yuan Christian University, Chungli 32023, Taiwan ^cDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan ^dR&D Center for Membrane Technology, Chung Yuan Christian University, Chungli 32023, Taiwan.

Corresponding Author *Tel: (+886) 3-5715131. E-mail: slwang@mx.nthu.edu.tw (S.-L. Wang) *Tel: (+886) 4-22840411-715. E-mail: btko@dragon.nchu.edu.tw (B.-T. Ko) *Tel: (+886) 3-2653315. E-mail: chiaher@cycu.edu.tw (C.-H. Lin)

	1	2	3	4
formula	$C_{28}H_{16}InO_{12}S$	C ₁₀₅ H ₁₀₈ In ₄ O ₄₄ N ₄ S	$C_{11}H_{6.50}In_{0.50}N_{0.50}O_5$	$C_{70}H_{40}Cl_2In_3O_2$
	2	4	S _{0.50}	0
fw	723.37	362.36	299.1	1614.38
space group	<i>P</i> -1	Ccca	Ccca	P21212
<i>a</i> , Å	7.2978(4)	14.5653(3)	15.0622(4)	29.6876(5)
<i>b</i> , Å	12.1206(7)	21.0484(5)	20.9202(5)	33.7481(5)
<i>c</i> , Å	20.9806(11)	23.9140(9)	23.4817(7)	9.4487(5)
<i>a,</i> ^o	78.626(3)	90	90	90
β,°	85.181(3)	90	90	90
γ,°	84.564(3)	90	90	90
volume, Å ³	1807.12(17)	7331.5(3)	7399.2(4)	9466.7(2)
Ζ	2	2	16	4
$D_{\rm cacl}$, g cm ⁻³	1.329	1.060	1.074	1.134
μ , mm ⁻¹	0.821	0.736	0.732	6.755
T, ⁰C	296(2)	295(2)	296(2)	296(2)
λ, Å	0.71073	0.71073	0.71073	1.54178
reflections collected	27446	31859	32917	63217
independent reflections	8698	4517	4598	16415
<i>R</i> (int)	0.0896	0.1087	0.0913	0.0414
Goodness-of-fit on F^2	0.902	0.807	0.886	1.086
$R_1[I \ge 2 \Box(I)]$	0.0280	0.0876	0.0501	0.0656
$wR_2[I \ge 2\Box(I)]$	0.0654	0.2662	0.1407	0.2044
R_1 [all data]	0.0353	0.1408	0.1121	0.0737
wR_2 [all data]	0.0679	0.2852	0.1449	0.2162
CCDC No.	1823435	1823434	1823437	1823436

Table S1. Crystallographic Data.

		1					
In(1)-O(1)	2.351(3)	In(1)-O(2)	2.169(3)				
In(1)-O(3)	2.207(3)	In(1)-O(4)	2.422(3)				
In(1)-O(5)	2.286(3)	In(1)-O(6)	2.257(3)				
In(1)-O(7)#1	2.415(4)	In(1)-O(8)#1	2.222(4)				
2							
In(1)-O(1)	2.305(3)	In(1)-O(1)#1	2.305(3)				
In(1)-O(2)	2.257(3)	In(1)-O(2)#1	2.257(3)				
In(1)-O(4)	2.300(3)	In(1)-O(4)#1	2.300(3)				
In(1)-O(5)	2.237(3)	In(1)-O(5)#1	2.236(3)				
3							
In(1)-O(1)	2.306(6)	In(1)-O(4)	2.312(5)				
In(1)-O(1)#1	2.306(6)	In(1)-O(4)#1	2.312(5)				
In(1)-O(2)	2.270(6)	In(1)-O(5)	2.235(5)				
In(1)-O(2)#1	2.270(5)	In(1)-O(5)#1	2.235(5)				
		4					
In(1)-O(15)	2.154(9)	In(1)-O(17)	2.230(7)				
In(1)-O(19)	2.239(9)	In(1)-O(4)	2.246(8)				
In(1)-O(3)	2.247(8)	In(1)-O(18)	2.318(7)				
In(1)-O(20)	2.358(11)	In(1)-O(16)	2.539(12)				
In(2)-O(8)	2.147(8)	In(2)-O(12)	2.155(7)				
In(2)-O(9)	2.168(6)	In(2)-O(10)	2.322(8)				
In(2)-O(11)	2.430(9)	In(2)-O(7)	2.564(9)				
In(2)-Cl(1)	2.385(3)	In(3)-O(5)	2.162(8)				
In(3)-O(14)	2.169(7)	In(3)-O(1)	2.234(7)				
In(3)-O(2)	2.244(6)	In(3)-O(13)	2.457(9)				
In(3)-O(6)	2.491(9)	In(3)-Cl(2)	2.386(3)				

Table S2. Selected bond lengths (Å).

Symmetry transformations used to generate equivalent atoms: for **2**, #1 -x+1/2,-y,z, #2 -x,y,-z+1/2#3 x+1/2,-y,-z+1/2; for**3**, #1 -x+1/2,-y,z #2 -x+0,-y-1/2,z #3 - x+1,-y,-z+1; for **4**, #1 x+1/2,y-1/2,-z, #2 x-1/2,y+1/2,-z, #3 -x,-y,-z.

(b)

Figure S1. The PXRD patterns of compounds 1 (a), 2 (b), 3 (c), 4 (d).

2θ (°)

Figure S2. (a) The coordination environment around Incenters in 3

Figure S3. TGA curves of compound 1 (black), 2 (red), 3 (blue), and 4 (pink).

(b)

Figure S4. The varied temperature PXRD patterns of 1 (a), 2(b), 3 (c), and 4 (d).

20

A.....

5

10

¹⁵ 2θ(°)

home and a second se

1

25

- 100

- 50

RT

1

30

Figure S5. The N₂ adsorption-desorption isotherms of compound 1 (blue), 2 (black), **3** (red), and **4**(Gray) at 77 K (the closed and open symbol represents the adsorption and desorption respectively).

Figure S6. (a) The CO₂ and CH₄ gas adsorption isotherms of 1 recorded at 273 K. (b) The CO₂, CH₄ and N₂ gas adsorption isotherms of 1 recorded at 298 K.

(b)

Figure S7. (a) The Q_{st} of compound 1 for CO₂ and CH₄. (b) H₂ adsorption-desorption isotherms of compound 1 at 77 K.

(b)

Figure S8. The CO_2 isotherm at 2 and 3 at (a) 273 K (b) 298 K.

Figure S9. The SEM images for compound (a) 1, (b) 2, (c) 3, and (d) 4.

Figure S10. The proposed reaction mechanism for compound 3.

Catalyst	Catalyst(g)	Co-catalyst (mol%)	Temperature(°C)	Pressure(MPa)	Reaction Times T (h)	Conversion (%)	ref.
MOF-5	2.5	2.5	60	6	4	98	37
In+Dpa+1,10 phen	0.35	0.35	60	1.2	6	92	38
In+Dpa+1,10 phen	0.35	0.35	50	1.2	6	66	38
HKUST-1	0.2	10	25	0.1	48	49	39
MOF1	0.2	10	25	0.1	48	96	39
Cr-MIL-101	1.2	0.62	25	0.8	34	82	40
CHB	1.6	1.6	120	1.2	6	62	41
PCN-224	-	-	100	2	4	42	42
Hf-Nu-1000	4	1/10	25	0.1	56	100	43
MMCF-2	0.13	7.2	25	0.1	48	95.4	44
MMPF-9	0.13	7.2	25	0.1	48	87.4	45
Zn-Glu	0.47	0.94	80	1.2	6	99	46
Ni-saldpen-MOF	0.7	2	80	2	4	86	47
MIL-47	0.1	2.5	50	2	24	95	48
MOF-205	0.6	0.6	25	1.2	24	89	49
1	0.1	1	80	2	24	85	+
2	0.1	1	80	2	24	89	+
3	0.1	1	80	2	24	92	+
4	0.1	1	80	2	24	98	+

Table S3. Coupling of propylene oxide (PO) and CO₂ to propylene carbonate (PC) catalyzed by various MOF/n-Bu₄NBr catalytic systems.

Figure S11. The PXRD after CO₂ cycloaddition of compound 4.

Figure S12. The ¹H NMR spectrum for PO to PC.

Figure S13. The ¹H NMR spectrum for entry 1.

Figure S14. The ¹H NMR spectrum for entry 2.

Figure S15. The ¹H NMR spectrum for entry 3.

Figure S16. The ¹H NMR spectrum for entry 4.