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1. H, B¥C{*H} and ?°Si{*H} NMR spectra of [Mg(NCsHs-4-SiPh3)>(THF)3] (2)
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Figure S1. 'H NMR spectrum of 2 in benzene-ds (*) at 25 °C.
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Figure S2. B3C{IH} NMR spectrum of 2 in benzene-ds (*) at 25 °C. (# unidentified species)
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Figure S3. 2Si{tH} NMR spectrum of 2 in benzene-ds at 25 °C.
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Figure S4. 'H NMR spectrum of 2 in THF-ds (*) at 25 °C.
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Figure S5. 13C{*H} NMR spectrum of 2 in THF-ds (*) at 25 °C.

2. 'H and ®*C{*H} NMR spectra of [Mg(NCsHe)2(py)4] (3)
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Figure S6. 'H NMR spectrum of 3 in THF-ds (*) at 25 °C.
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Figure S7. B3C{*H} NMR spectrum of 3 in THF-ds (*) at 25 °C.
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Figure S8. *H NMR spectrum of 3 in benzene-ds (*) at 25 °C.
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Figure S9. 'H NMR spectrum of 3 in pyridine-ds (*) at 25 °C.
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Figure S10. C{*H} NMR spectrum of 3 in pyridine-ds (*) at 25 °C.
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3. H and BC{*H} NMR spectra of [Mg(NCsDsH)2(py-ds)a] (3-HD)
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Figure S11. *H NMR spectrum of 3-HD in benzene-ds (*) at 25 °C.
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Figure S12. 'H NMR spectrum of 3-HD in THF-ds (*) at 25 °C (# unidentified species).
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Figure S13. 2D NMR spectrum of 3-HD in THF with benzene-ds as standard (#) at 25 °C.
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Figure S14. *H NMR spectrum of 3-HD in pyridine-ds (*) at 25 °C.
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4. H, BC{*H} and 2°Si{*H} NMR spectra of [(MesTACD)Mg(NCsHs-4-SiPhs)] (5)
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Figure S15. *H NMR spectrum of 5 in THF-ds (*) at 25 °C (# unidentified species).
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Figure S16. 13C{*H} NMR spectrum of 5 in THF-ds (*) at 25 °C (# unidentified species).
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Figure S17. 2°Si{*H} NMR spectrum of 5 in THF-ds at 25 °C.
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Figure S18. 'H NMR spectrum of 5 in benzene-ds (*) at 25 °C.
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Figure S19. 3C{*H} NMR spectrum of 5 in benzene-ds (*) at 25 °C.
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Figure S20. 2°Si{H} NMR spectrum of 5 in benzene-ds at 25 °C.
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5. 'H, BC{*H} and #Si{*H} NMR spectra of [(MesTACD-AlEt3)Mg(NCsHs-4-SiPhs)] (7)
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Figure S21. *H NMR spectrum of 7 in THF-ds (*) at 25 °C (# unidentified species).
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Figure S22. 13C{*H} NMR spectrum of 7 in THF-ds (*) at 25 °C (# unidentified species).
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Figure S23. 2°Si{*H} NMR spectrum of 7 in THF-ds at 25 °C.
6. 'H and *C{*H} NMR spectra of [(MesTACD)Mg(NCsHs)] (8) + 4-(triphenylsilyl)pyridine
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Figure S24. 'H NMR spectrum of 8 and 4-(triphenysilyl)pyridine in benzene-ds (*) at 25 °C (# pyridine).
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7. H and C{*H} NMR spectra of [(MesTACD)Mg(NCsHg)] (8)
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Figure S25. 'H NMR spectrum of 8 in THF-ds (*) at 25 °C (# unidentified species).
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Figure S26. B3C{*H} NMR spectrum of 8 in THF-ds (*) at 25 °C.
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Figure S27. 'H NMR spectrum of 8 in benzene-ds (*) at 25 °C.
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Figure S28. 3C{*H} NMR spectrum of 8 in benzene-ds (*) at 25 °C.
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8. 'H, ¥C{*H} and ?°Si{*H} NMR spectra of 4-(triphenylsilyl)pyridine

7.54 7.14

a
8.57
#
M
s
4.00 12.12 3.92 6.11 12.37
T Tes T T g T s T T T T T T T T T s

Chemical Shi.ft (ppm)

Figure S29. 'H NMR spectrum of 4-(triphenylsilyl)pyridine in benzene-ds (*) at 25 °C (# pyridine).
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Figure S30. 13C{*H} NMR spectrum of 4-(triphenylsilyl)pyridine in benzene-ds (*) at 25 °C (# pyridine).
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Figure S31. 2°Si{1H} NMR spectrum of 4-(triphenyisilyl)pyridine in benzene-ds (*) at 25 °C.

9. Comparison of the 'H NMR signals for the protons of the 1,4-dihydropyridyl ring

in2,3,5,7and 8

Table S1. Comparison of the 'H NMR signals for the protons of the pyridyl ring in 2-, 3- and 4-

position in 2, 3, 5, 7 and 8 in benzene-ds and thf-ds in ppm.

Complex | Solvent 2-Position 3-Position 4-Position

2 benzene-ds 5.95 4.56 4.00
THF-ds 5.56 3.74 3.81

3 benzene-ds 6.45 4.54 3.81
THF-ds 5.84 3.75 3.21

5 benzene-de | 6.02 4.43
THF-ds 5.72 3.69 3.76

7 THF-ds 5.76 3.78

8 benzene-ds 6.39 4.57 4.04
THF-ds 5.91 3.68 3.20

S16




10. Catalytic hydrosilylation and hydroboration of pyridine

Preparation of a sample for the catalytic hydrosilylation of pyridine.

A J. Young NMR tube was charged with pyridine (24 mg, 24 uL, 0.3 mmol), PhSiHs (32 mg, 37 uL, 0.3
mmol), hexamethylbenzene (16 mg, 0.1 mmol) and THF-ds (0.5 mL) and a *H NMR spectrum was recorded.
After addition of the catalyst (10 mol%), the reaction mixture was heated to 80 °C and the progress of the

reaction mixture was monitored by *H NMR spectroscopy.

Preparation of a sample for the catalytic hydroboration of pyridine.

A J. Young NMR tube was charged with pyridine (24 mg, 24 uL, 0.3 mmol) or 4-tert-butylpyridine (41 mg,
44 ul, 0.3 mmol), HBPin (38 mg, 44 uL, 0.3 mmol), hexamethylbenzene (16 mg, 0,1 mmol) and THF-ds or
benzene-ds (0.5 mL) and a *H NMR spectrum was recorded. After addition of the catalyst (10 mol%), the
reaction mixture was heated to 80 °C and the progress of the reaction mixture was monitored by *H NMR

spectroscopy.
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Example of a *H NMR spectrum of the catalytic hydroboration of pyridine.
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Figure S32. IH NMR spectra of the catalytic hydroboration of pyridine with pinacolborane (HBPin) in THF-
ds (*) before adding the catalyst (bottom) and after adding the catalyst and heating for 72 h at 80 °C (top).
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11. Exchange of 3 and 8 with pyridine-ds to give 3-HD and 8-HD

[Mg(NCsHs)2(py)4] (3) shows an exchange with pyridine-ds to give [Mg(NCsDsH)2(py-ds)4] (3-HD).
The exchange is reversible as 3-HD reacts with pyridine back to 3 as monitored by 'H NMR

spectroscopy in THF-ds (Figure S33).
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Figure S33. *H NMR spectra of 3-HD and 6 equivalents of pyridine in THF-ds (*) after 10 min (bottom) and
after 26 h at 25 °C (top).
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The reaction of 3 with excess pyridine-ds to give 3-HD was monitored by *H NMR spectroscopy at different
temperatures. A sample concentration of ¢ = 0.06 mol/L was adjusted by mixing [Mg(NCsHs)2(py)4] (3) (15
mg; 0.03 mmol), hexamethylbenzene (internal standard; 2.4 mg; 0.015 mmol) and 0.5 mL of pyridine-ds. A
plot of the amount of 3 versus time at different temperatures is given in Figure S34.
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Figure S34. Amount of 3 versus time at at 298 K (green), 313 K (blue) and 333 K (red).

The reversible exchange of 3 in pyridine-ds to 3-HD follows pseudo-first order kinetics and can be described
by the following equation (Equation S1).

[c] = [co] - e7* > In([c]/[co) = —k -t
Equation S1. First order kinetics.

To determine the reaction rate of the reversible exchange of 3 with excess pyridine-ds, In(c(3)/co(3)) versus
time was plotted for the different temperatures (Figure S35). The slope was deduced from the plot for each
temperature (straight lines).
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Figure S35. Pot of In(c(3)/co(3)) versus time for the reaction of 3 with excess pyridine-ds at 298 K (green),
313 K (blue) and 333 K (red).

The reaction rates of the reversible exchange of 3 with pyridine-ds at different temperatures can be
determined from the slope (k1(298 K) = (1.29+0.01)-10°° s71, half life ty2 = 15 h; ki(313 K) =
(7.12+0.08)-107° s, half life tiz = 2.7 h; ki(333 K) = (5.59+0.10)-10~* s7%, half life ti2 = 0.3 h). The
reaction rate is dependent on the temperature and can be described by the Arrhenius equation
(Equation S2).

E, 1
— A.po—Ea/RT — _-A
k= A-e - In(k) = In(4) T

Equation S2. Arrhenius equation.

To determine the activation energy Ea of the reversible exchange of 3 with excess pyridine-ds, In(k) versus
1/T was plotted for the different temperatures (Figure S36). The slope was deduced from the plot to

determine the activation energy (Ea = (70.1+0.6)-kJ-mol?).
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Figure S36. Pot of In(k) versus 1/T for the reaction of 3 with excess pyridine-ds.

The reaction of 8 with excess pyridine-ds to give 8-HD was monitored by 'H NMR spectroscopy at different
temperatures. A sample concentration of ¢ = 0.06 mol/L was adjusted by mixing [(MesTACD)Mg(NCsHse)]
(8) (9.5 mg; 0.03 mmol), hexamethylbenzene (internal standard; 2.4 mg; 0.015 mmol) and 0.5 mL of
pyridine-ds. A plot of the amount of 8 versus time at different temperatures is given in Figure S37.
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Figure S37. Amount of 8 versus time at 333 K (red), 343 K (orange) and 353 K (purple).

The reversible exchange of 8 in pyridine-ds to 8-HD follows pseudo-first order kinetics and can be described
by the Equation S1. To determine the reaction rate of the reversible exchange of 8 with excess pyridine-ds,
In(c(8)/co(8)) versus time was plotted for the different temperatures (Figure S38). The slope was deduced

from the plot for each temperature (straight lines).
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Figure S38. Pot of In(c(8)/co(8)) versus time for the reaction of 8 with excess pyridine-ds at 333 K (red), 343
K (orange) and 353 K (purple).

The reaction rates of the reversible exchange of 8 with pyridine-ds at different temperatures can be
determined from the slope (k1(333 K) = (2.48+0.06)-107° s, half life tuz = 7.8 h; ki(343 K) =
(7.30+0.13)-1075 s71, half life tuz = 2.6 h; k1(353 K) = (1.72+0.02)-104 s7%, half life tu2 = 1.1 h). The
reaction rate is dependent on the temperature and can be described by Equation S2. To determine
the activation energy Ea of the reversible exchange of 8 with excess pyridine-ds, In(k) versus 1/T was plotted
for the different temperatures (Figure S39). The slope was deduced from the plot to determine the activation

energy (Ea = (94.7+1.9)-kJ-mol?).
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Figure S39. Pot of In(k) versus 1/T for the reaction of 8 with excess pyridine-ds.
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12. X-ray crystallography

Intensity data for 3 and 5 were collected on a Bruker D8 goniometer with an APEX CCD area-detector and
intensity data for 8 were collected on a Eulerian 4-circle diffractometer (STOE STRADIVARI). All
measurements were carried out at —173 °C in w-scan mode. Data reductions and absorption corrections
were carried out with the programs SAINTS! and SADABSS? (3 and 5) or with X-AreaS3 and STOE X-Red3254

8).

All structures were solved with SIR-92.55 3 contains four crystallographically independent co-crystallized
non-coordinated pyridine molecules. Three of them are found around crystallographic symmetry elements
(Wyckoff positions 4e, 4c and 4d in space group 12/a) and show Ci or C2 symmetry, respectively. The
crystallographic symmetry leads to disorder of an N atom against a CH unit (involving N8 and C36, N9 and
C40 as well as N10 and C43). The solid of 5 contains one non-coordinated toluene molecule. 5 contains a
slightly disordered MesTACD fragment which could be resolved well with split positions for the atoms C4,
C5, and C10.

All refinements were performed against F? with SHELXL-2013%¢ as implemented in the program system

WinGX.S7 All non-hydrogen atoms were assigned anisotropic displacement parameters.

In 3, all hydrogen atoms of the molecule and of one co-crystallized pyridine molecule were refined in their
position. The hydrogen atoms of the three pyridine molecules that are found with crystallographic symmetry
and therefore involve disorder are included in calculated positions and were treated as riding in the
refinement. In 5, all hydrogen atoms were included in calculated position and treated as riding, except for
hydrogen atom C14 that was refined in its position. All hydrogen atoms in 8 were refined in their position

with isotropic displacement parameters.

Graphical representations were performed with the program DIAMOND.S8
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Table S2. Crystal data and convergence results for compounds 3, 5 and 8.

3 5 8
formula CssHsaMg2N17 C41Hs3MgNsSi C16H31MgNs
Fw /g'mol? 1397.35 668.28 317.77
color, habit orange, rod yellow block colorless block

crystal size / mm

0.31 x0.32 x0.43

0.09 x0.12 x 0.16

0.07 x 0.10 x 0.15

crystal system monoclinic triclinic monoclinic

space group 12/a P1 12/a

alA 21.864(4) 7.5892(8) 20.2890(15)

b/A 11.040(2) 14.8942(17) 7.5500(5)

c/A 32.266(5) 18.236(2) 23.1460(14)

al° 67.9347(19)

B/° 101.021(5) 81.964(2) 90.814(5)

E 78.815(2)

vV /A3 7645(2) 1869.0(4) 3545.2(4)

Z 4 2 8

dcac/Mg-m-3 1.214 1.188 1.191

M(MoKa)/mm-! 0.089 0.115 0.105

F(000) 2968 720 1392

O6range/° 1.90 — 28.45 1.49 — 26.62 2.65 —27.50

index ranges -29<h<29,-14<ks |-9sh<9,-18<k <18,- |-26<h<24,-9<k <9,-
14,-43<1<43 22<1=522 26<1<30

refln. 52336 23152 27730

indep refl (Rint) 9582 (0.0621) 7835 (0.0458) 4072 (0.1078)

observed refins 7626 5784 2689

data/restr/param 9582 /0/617 7835/0/486 4072 /0/ 323

R1, wR2 [I> 20(1)]

0.0498, 0.1223

0.0567, 0.1341

0.0585, 0.1362

R1, wR2 (all data)

0.0640, 0.1306

0.0795, 0.1487

0.0973, 0.1570

GooF on F2 1.037 1.038 1.029

largest diff peak, 0.400, -0.288 0.790, -0.478 0.312, -0.311
hole/ e-A3

CCDC number 1835200 1835300 1835301
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