# **Supplementary Material for**

# Crystalline, Room-Temperature Stable Phophine–SO<sub>2</sub> Adducts: Generation of Sulfur Monoxide from Sulfur Dioxide

Florenz Buß,<sup>†</sup> Philipp Rotering,<sup>†</sup> Christian Mück-Lichtenfeld,<sup>‡</sup> Fabian Dielmann<sup>†</sup>\*

† Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstrasse 30, 48149 Münster (Germany) E-mail: dielmann@uni-muenster.de Homepage: http://www.uni-muenster.de/Chemie.ac/hahn/dielmann/index.html

‡ Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40, 48149 Münster (Germany)

# CONTENTS:

| Synthetic Details                                                                            | 3  |
|----------------------------------------------------------------------------------------------|----|
| Reaction of selected phosphines with excess sulfur dioxide                                   | 4  |
| Preparation of phosphine–SO <sub>2</sub> adducts 2a-c                                        | 7  |
| Thermal decomposition of phosphine–SO2 adducts 2a-c                                          | 15 |
| Preparation of phosphine sulfide 3c                                                          | 25 |
| Preparation of phosphine oxides 4a-c                                                         | 28 |
| Preparation of phosphine-SO <sub>3</sub> adducts 5a-b and PtBu <sub>3</sub> –SO <sub>3</sub> | 34 |
| X-ray Diffraction Studies                                                                    | 40 |
| Single-crystal X-ray structure analysis of 2c:                                               | 41 |
| Single-crystal X-ray structure analysis of 2b:                                               | 42 |
| Single-crystal X-ray structure analysis of 5a:                                               | 43 |
| Single-crystal X-ray structure analysis of <i>t</i> Bu <sub>3</sub> P-SO <sub>3</sub> :      | 44 |
| Preliminary Single-crystal X-ray structure analysis of 4c·3SO <sub>2</sub> :                 | 45 |
| DFT Calculations                                                                             | 46 |
| Cartesian coordinates of all DFT-optimized structures                                        | 52 |
| References                                                                                   | 59 |

# Synthetic Details

**General remarks:** All manipulations were performed under an inert atmosphere of dry argon, using standard Schlenk and drybox techniques. Dry and oxygen-free solvents were employed. All glassware was oven-dried at 160 °C prior to use. <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR spectra were recorded at 300 K on Agilent DD2 600, Bruker AVANCE I 400, Bruker AVANCE III 400 or Bruker AVANCE II 200 spectrometers. Chemical shifts are given in parts per million (ppm) relative to SiMe<sub>4</sub> (<sup>1</sup>H, <sup>13</sup>C), 85% H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P) and they were referenced to the residual solvent signals (C<sub>6</sub>D<sub>6</sub>: <sup>1</sup>H  $\delta_{\rm H} = 7.16$ , <sup>13</sup>C  $\delta_{\rm C} = 128.06$ ; CD<sub>3</sub>CN:  $\delta_{\rm H} = 1.94$ , <sup>13</sup>C  $\delta_{\rm C} = 118.26$ ; toluene- $d_8$ : <sup>1</sup>H  $\delta_{\rm H} = 2.09$ , <sup>13</sup>C  $\delta_{\rm C} = 20.40$ ; THF- $d_8$ : <sup>1</sup>H  $\delta_{\rm H} = 1.73$ , <sup>13</sup>C  $\delta_{\rm C} = 67.57$ ) or internally by the instrument after locking and shimming to the deuterated solvent (<sup>31</sup>P). Chemical shifts ( $\delta$ ) are reported in ppm. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, p = pentet, sept = septet, m = multiplet, br = broad signal. Mass spectrometry was recorded using an Orbitrap LTQ XL (Thermo Scientific) spectrometer. IR spectra were obtained on a Bruker Alpha Spectrometer.

**Reagents and Handling:** Phosphines **1a**, **1b** and **1c** as well as phosphine sulfides **3a** and **3b** were prepared as published. <sup>[1,2]</sup> Sulfur dioxide was purchased from Messer Griesheim GmbH (47805 Krefeld, Germany) as SO<sub>2</sub> 3.8 (99.98%). All other compounds were purchased from commercial sources (Sigma Aldrich, Alfa Aesar, abcr GmbH, Strem Chemicals) and used as received.

# Reaction of selected phosphines with excess sulfur dioxide

**General procedure:** The reaction of  $SO_2$  with phosphines was studied by NMR experiments, which were performed with samples of the respective phosphine under  $SO_2$  pressure in Wilmad® low pressure/vacuum NMR tubes purchased from Sigma Aldrich in the solvent indicated. The NMR tube containing the solution of the phosphine was frozen in liquid nitrogen and the argon atmosphere was removed *in vacuo*. After warming the NMR tube to room temperature, it was pressurized with 2 bar  $SO_2$ .

 $P(iPr)_3$ ,  $P(o-tol)_3$ ,  $PPh_3$ : After pressurizing solutions of  $P(iPr)_3$ ,  $P(o-tol)_3$  and  $PPh_3$  in C<sub>6</sub>D<sub>6</sub> with 2 bar SO<sub>2</sub> at room-temperature for 5 hours the solutions turned yellow, which has been observed previously.<sup>[3]</sup> However, the <sup>1</sup>H and <sup>31</sup>P NMR spectra of the reaction mixtures were identical to those without SO<sub>2</sub>, indicating no reaction of alkyl or aryl phosphines with SO<sub>2</sub> at ambient conditions.

**P**(**NI***i***Pr**)*i***Pr**<sub>2</sub> (1a): Pressurizing a solution of phosphine 1a in C<sub>6</sub>D<sub>6</sub> with 2 bar SO<sub>2</sub> at room-temperature resulted in the formation of multiple species. The phosphorus containing species show singlets at 104.5, 67.6, 42.8, 38.3, 36.7 ppm in the <sup>31</sup>P NMR spectrum (Figure S1), with different chemical shift to the corresponding phosphine oxide 4a (33.4 ppm) and phosphine sulfide **3a** (66.1 ppm).

**P**(**NI***i***Pr**)<sub>2</sub>*i***Pr** (**1b**): Pressurizing a solution of phosphine **1b** in C<sub>6</sub>D<sub>6</sub> with 2 bar SO<sub>2</sub> at room-temperature resulted in the formation of four new compounds after 10 minutes, which show singlets in the <sup>31</sup>P NMR spectrum at 50.2, 15.4, 12.9 and 9.4 ppm (Figure S2) in a ratio of 2:12:16:1, respectively. After 3 hours at room temperature the signal at 15.4 ppm had disappeared (Figure S3) concomitant with increasing the relative intensity of the signals of the remaining species. The <sup>31</sup>P resonances matched to those of phosphine sulfide **3b** (50.2 ppm), phosphine oxide **4b** (12.9 ppm) and phosphine–SO<sub>3</sub> **5b** (9.4 ppm) with excess of SO<sub>2</sub> (*vide infra*, independent preparation of the latter).

 $P(NIiPr)_3$  (1c): After pressurizing a solution of phosphine 1c in C<sub>6</sub>D<sub>6</sub> with 2 bar SO<sub>2</sub> at room-temperature, a new species was formed, which show a signal at -14.4 ppm in the <sup>31</sup>P NMR spectrum (Figure S4). A preliminary XRD study of crystals grown from the reaction mixture indicate the formation of the phosphine oxide, which is coordinated to three SO<sub>2</sub> molecules (see Figure S54). The volatiles were removed *in vacuo* at room temperature to afford a colorless solid.

The phosphine oxide  $OP(NIiPr)_3$  (**4c**) was detected in the high resolution mass spectrum (HRMS/ESI) as the major species: m/z calculated for  $[C_{33}H_{61}N_9PO]^+$  (M+H)<sup>+</sup> 630.47312, found 630.47672.



*Figure S1:* <sup>31</sup>P NMR spectrum ( $C_6D_6$ , 300 K, 162 MHz) of **1a** after pressurizing the NMR tube with 2 bar SO<sub>2</sub> for 1 hour.



*Figure S2:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **1b** after pressurizing the NMR tube with 2 bar SO<sub>2</sub> for 10 minutes.



*Figure S3:* <sup>31</sup>P NMR spectrum ( $C_6D_6$ , 300 K, 162 MHz) of **1b** after pressurizing the NMR tube with 2 bar SO<sub>2</sub> for 3 hours.



*Figure S4:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **1c** after pressurizing the NMR tube with 2 bar SO<sub>2</sub>.

# Preparation of phosphine-SO2 adducts 2a-c

Phosphine–SO<sub>2</sub> adducts **2a**, **2b** and **2c** were prepared from the reaction of phosphines **1a**, **1b** and **1c** with 1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide), which is abbreviated by DABSO hereafter. DABSO was used as a convenient source of stoichiometric amounts of SO<sub>2</sub>.

**Compound 2a**: Phosphine **1a** (60 mg, 0.1926 mmol, 2 eq.) and DABSO (24 mg, 0.0962 mmol, 1 eq.) were dissolved in 1,2-difluorobenzene (3 mL) at -78 °C. The reaction mixture was immediately analyzed by



NMR spectroscopy. DABCO could not be separated from **2a**, owing to the rapid decomposition of **2a** at room temperature.

<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 4.93 (s, br, 2H, NCHMe<sub>2</sub>), 2.53 (s, 6H, CH<sub>3</sub>), 2.41 (h, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, 2H, PCHMe<sub>2</sub>), 1.39 (dd, <sup>3</sup>J<sub>PH</sub> = 15.2 Hz, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 6H, PCHCH<sub>3</sub>), 1.26 (dd, <sup>3</sup>J<sub>PH</sub> = 14.9 Hz, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 6H, PCHCH<sub>3</sub>), 1.23 ppm (d, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 12H, NCHCH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta$  = 39.8 ppm (m).



Figure S5: <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of 2a. \* Difluorobenzene



*Figure S6:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **2a**.

**Compound 2b**: Phosphine **1b** (120 mg, 0.256 mmol, 2 eq.) and DABSO (32 mg, 0.128 mmol, 1 eq.) were suspended in THF (3 mL) at -78 °C. After stirring for 20 minutes at -78 °C, the NMR spectra of the solution showed quantitative formation of **2b**. To remove DABCO from the mixture, *n*-hexane (10 mL) was added. The resulting precipitate was filtered off and washed with *n*-hexane (3 x 5 mL). After evaporation to dryness, **2b** was isolated as a white solid in 70% yield (94 mg, 0.179 mmol). Single crystals of **2b** were grown by slow

diffusion of *n*-hexane into a solution of **2b** in benzene. The phosphine– $SO_2$  adduct **2b** is soluble in benzene and THF, and insoluble in *n*-hexane and diethyl ether. Slow decomposition (40%) of **2b** was observed by <sup>31</sup>P NMR analysis, when the solid **2b** was stored under an atmosphere of dry argon for 2.5 weeks.

<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.28 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 4H, NC*H*Me<sub>2</sub>), 2.85 (m, 1H, PC*H*Me<sub>2</sub>), 1.67 (s, 12H, CH<sub>3</sub>), 1.64 (dd, <sup>3</sup>*J*<sub>PH</sub> = 15.1 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, 6H, 6H, PCHC*H*<sub>3</sub>), 1.29 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 24H, NCHC*H*<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 146.5$  (N<sub>2</sub>CN), 117.2 (C=C), 47.0 (NCHMe<sub>2</sub>), 29.4 (d, <sup>1</sup>*J*<sub>PC</sub> = 52.8 Hz, PCHMe<sub>2</sub>), 21.6 (m, NCH(*C*H<sub>3</sub>)<sub>2</sub>), 17.6 (s, PCH(*C*H<sub>3</sub>)<sub>2</sub>), 17.6 (s, PCH(*C*H<sub>3</sub>)<sub>2</sub>), 9.95 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta = 20.4$  ppm (m).

**HRMS (ESI)**: m/z calculated for  $[N_6H_{48}C_{25}P]^+$  (M+H-SO<sub>2</sub>)<sup>+</sup> 463.36726, found 463.36765.

**IR** v/cm<sup>-1</sup> = 2972.70, 2933.71, 1559.42, 1517.95, 1466.77, 1398.43, 1367.17, 1209.64, 1139.05, 1078.34, 974.85, 959.99.

CHN analysis: found (calculated): C 56.54 (57.01) H 9.07 (8.99) N 15.75 (15.96).



*Figure S8:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CD<sub>3</sub>CN, 300 K, 101 MHz) of **2b**.





Figure S10: IR spectra of 2b.

Compound 2c: Phosphine 1c (100 mg, 0.1628 mmol, 2 eq.) and DABSO (20 mg, 0.0814 mmol, 1 eq.) were



dissolved in THF (3 mL). Stirring the reaction mixture for 5 minutes at room temperature resulted in precipitation of a white solid, which was filtered off and washed with *n*-hexane (3 x 5 mL). After evaporation to dryness, **2c** was isolated as a white solid in 97% yield (106 mg, 0.1578 mmol). Single crystals of **2c** were formed by slow cooling of a saturated solution of **2c** in THF. Phosphine–SO<sub>2</sub> adduct **2c** is good soluble in acetonitrile, 1,2-difluorobenzene and fluorobenzene, and insoluble in THF, diethyl ether, *n*-hexane and benzene.

<sup>1</sup>**H NMR** (400 MHz, CD<sub>3</sub>CN):  $\delta$  = 5.25 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, NC*H*Me<sub>2</sub>), 2.14 (s, 18H, CH<sub>3</sub>), 1.32 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 36H, NCHC*H*<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>3</sub>CN):  $\delta$  = 147.0 (N<sub>2</sub>CN), 118.3 (C=C), 47.5 (NCHMe<sub>2</sub>), 21.8 (NCH(CH<sub>3</sub>)<sub>2</sub>), 10.4 ppm (CH<sub>3</sub>).

<sup>31</sup>**P** NMR (161.9 MHz, CD<sub>3</sub>CN):  $\delta = -7.2$  ppm (m).

<sup>1</sup>**H NMR** (400 MHz, fluorobenzene + C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.67 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, NC*H*Me<sub>2</sub>), 1.82 (s, 18H, CH<sub>3</sub>), 1.34 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 36H, NCHC*H*<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, fluorobenzene + C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 146.6 (N<sub>2</sub>CN), 116.6 (C=C), 46.6 (NCHMe<sub>2</sub>), 21.3 (NCH(*C*H<sub>3</sub>)<sub>2</sub>), 9.4 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz, fluorobenzene +  $C_6D_6$ ):  $\delta = -4.91$  ppm (m).

**HRMS (ESI)**: m/z calculated for  $[C_{66}H_{121}N_{18}O_4P_2S_2]^+$  (2M+H)<sup>+</sup> 1355.87294, found 1355.87574. **IR** v/cm<sup>-1</sup> = 2970.28, 2936.22, 1537.11, 1461.26, 1386.46, 1364.40, 1243.55, 1204.60, 1137.44, 1096.81, 1064.46, 966.93, 950.62, 814.25, 728.00.

CHN analysis: found (calculated): C 58.03 (58.38) H 9.00 (9.06) N 17.86 (18.57).



*Figure S11:* <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 300 K, 400 MHz) of **2c**.



*Figure S12:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CD<sub>3</sub>CN, 300 K, 101 MHz) of **2c**.



*Figure S13:* <sup>31</sup>P NMR spectrum (CD<sub>3</sub>CN, 300 K, 162 MHz) of **2c**.



*Figure S14:* <sup>1</sup>H NMR spectrum (fluorobenzene + C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of **2c**. \* fluorobenzene



*Figure S15:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (fluorobenzene +  $C_6D_6$ , 300 K, 101 MHz) of **2c**. \* fluorobenzene



*Figure S16:* <sup>31</sup>P NMR spectrum (fluorobenzene +  $C_6D_6$ , 300 K, 162 MHz) of **2c**.



Figure S17: IR spectrum of 2c.

# Thermal decomposition of phosphine–SO<sub>2</sub> adducts 2a-c

## Decomposition of 2a at room temperature:

Phosphine–SO<sub>2</sub> adduct **2a** was prepared by the reaction of **1a** and DABSO in diflourobenzene at -78 °C. The <sup>31</sup>P NMR spectrum of the mixture was recorded immediately (Figure S18), which showed the resonance of **2a** at –39.8 ppm (m). The decomposition reaction was monitored by recording <sup>31</sup>P and <sup>1</sup>H NMR spectra after 2, 10, 20, 80, 130 and 260 minutes, respectively (Figure S19). After 5 h at room temperature full consumption of **2a** was observed in the <sup>31</sup>P NMR spectrum, indicating the selective formation of phosphine sulfide **3a** (65.8 ppm), phosphine oxide **4a** (33.2 ppm) and phosphine–SO<sub>3</sub> adduct **5a** (37.6 ppm) in 1:1:1 ratio, respectively (Figure S20). The reaction products **3a**, **4a** and **5a** were identified by their independent preparation from the reaction of phosphine **1a** with elemental sulfur, N<sub>2</sub>O or pyridine–SO<sub>3</sub>, respectively (*vide infra*).



*Figure S18:* <sup>31</sup>P NMR spectrum (fluorobenzene +  $C_6D_6$ , 300 K, 162 MHz) of **2a** instantaneously after allowing the sample to warm up to room-temperature.



*Figure S19:* <sup>31</sup>P NMR spectrum ( $C_6D_6$ , 300 K, 162 MHz) of **2a** after keeping the sample at room-temperature for the times indicated.



*Figure S20:* <sup>31</sup>P NMR spectrum (fluorobenzene +  $C_6D_6$ , 300 K, 162 MHz) of **2a** after keeping the sample at room-temperature for 5 hours.



*Figure S21:* <sup>1</sup>H NMR spectrum (fluorobenzene +  $C_6D_6$ , 300 K, 400 MHz) of **2a** after keeping the sample at room-temperature for 5 hours.

The following ions were identified in the high-resolution mass spectrum (HRMS/ESI) of the reaction mixture:

 $[4a+H]^+$ : m/z calc. for  $[C_{17}H_{35}N_3PO]^+$  (M+H)<sup>+</sup> 328.25123, found: 328.25114.

 $[4a+Na]^+$ : m/z calc. for  $[C_{17}H_{34}N_3PONa]^+$  (M+Na)<sup>+</sup> 350.23317, found: 350.23307.

 $[3a+H]^+$ : m/z calc. for  $[C_{17}H_{35}N_3PS]^+$  (M+H)<sup>+</sup> 344.22838, found: 344.22805.

 $[3a+Na]^+$ : m/z calc. for  $[C_{17}H_{34}N_3PSNa]^+$  (M+Na)<sup>+</sup> 366.21033, found: 366.20999.

 $[5a+Na]^+$ : m/z calc. for  $[C_{17}H_{34}N_3PSO_3Na]^+$  (M+Na)<sup>+</sup> 414.19507, found: 414.19461.

## Decomposition of 2b at room-temperature:

Phosphine–SO<sub>2</sub> adduct **2b** was prepared by the reaction of **1b** and DABSO in THF at -78 °C. **2b** is stable when stored as solid at -40 °C. The <sup>31</sup>P NMR spectrum in C<sub>6</sub>D<sub>6</sub> at room temperature showed the resonance of **2b** at 20.4 ppm (m) (Figure S22). The decomposition reaction was monitored by recording <sup>31</sup>P and <sup>1</sup>H NMR spectra after 10, 20, 85, 130, 265 and 385 minutes, respectively. After 23 h at room temperature full consumption of **2b** was observed and the <sup>31</sup>P NMR indicated the selective formation of phosphine sulfide **3b** (46.2 ppm), phosphine oxide **4b** (11.6 ppm) and phosphine–SO<sub>3</sub> **5b** (9.6 ppm) in 1:6:2 ratio, respectively (Figure S23). The reaction products **3b**, **4b** and **5b** were identified by their independent preparation from the reaction of phosphine **1b** with elemental sulfur, N<sub>2</sub>O or pyridine–SO<sub>3</sub>, respectively (*vide infra*).





Figure S22: <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **2b** at room-temperature.



*Figure S23:* <sup>31</sup>P NMR spectrum ( $C_6D_6$ , 300 K, 162 MHz) of **2b** after keeping the sample at room-temperature for the time indicated.



*Figure S24:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **2b** after keeping the sample at room-temperature for 23 h.



*Figure S25:* <sup>1</sup>H NMR spectrum ( $C_6D_6$ , 300 K, 400 MHz) of **2b** after keeping the sample at room-temperature for 23 hours.

The following ions were identified in the high-resolution mass spectrum (HRMS/ESI) of the reaction mixture:

 $(3b+H)^+$ : m/z calc. for  $[C_{25}H_{48}N_6PS]^+$  (M+H)<sup>+</sup> 495.33933, found: 495.33933.

 $(4b+H)^+$ : m/z calc. for  $[C_{25}H_{48}N_6PO]^+$  (M+H)<sup>+</sup> 479.36170, found: 479.36211.

 $(5b+K)^+$ : m/z calc. for  $[C_{25}H_{47}N_6PSO_3K]^+$  (M+K)<sup>+</sup> 581.27995, found: 581.30106.

## Thermal decomposition of 2b in presence of PPh3.

In an NMR tube **2b** (25 mg, 0.047 mmol, 1 eq.) and PPh<sub>3</sub> (50 mg, 0.190 mmol, 4 eq.) were dissolved in  $C_6D_6$ . The NMR spectrum of the mixture showed no immediate reaction (Figure S26). After storing the sample at room temperature for 36 h, the formation of **4b**, SPPh<sub>3</sub> and OPPh<sub>3</sub> was observed in the <sup>31</sup>P NMR spectrum of the reaction mixture (Figure S27). **4b** and OPPh<sub>3</sub> were identified by high-resolution mass spectrometry (HRMS/ESI) of the reaction mixture:

 $(OPPh_3+Na)^+$ : m/z calc. for  $[C_{18}H_{15}NaPO]^+$  (M+Na)<sup>+</sup> 301.07527, found: 301.07510.

 $(4b+H)^+$ : m/z calc. for  $[C_{25}H_{48}N_6PO]^+$  (M+H)<sup>+</sup> 479.36170, found: 479.36188.



*Figure S26:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **2b** and PPh<sub>3</sub>.



*Figure S27:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz, D<sub>1</sub> = 25 sec., aq. Time = 0.66 sec., zg 90) of **2b** and PPh<sub>3</sub> after keeping the sample at room temperature for 36 h.

## Thermal decomposition of 2b in presence of $P(nBu)_3$ .

In an NMR tube **2b** (25 mg, 0.047 mmol, 1 eq.) and  $P(nBu)_3$  (38 mg, 0.190 mmol, 4 eq.) were dissolved in  $C_6D_6$  (Figure S28). After storing the sample at room temperature for 36 h, the formation of **4b**,  $SP(nBu)_3$  and  $OP(nBu)_3$  was observed in the <sup>31</sup>P NMR spectrum of reaction mixture (Figure S29). **4b** and  $OP(nBu)_3$  were identified by high-resolution mass spectrometry (HRMS/ESI) of the reaction mixture:

 $(2 \times OP(nBu)_3 + Na)^+$ : m/z calc. for  $[C_{18}H_{15}NaPO]^+$  (M+Na)<sup>+</sup> 301.07527, found: 301.07510.

 $(4b+H)^+$ : m/z calc. for  $[C_{25}H_{48}N_6PO]^+$  (M+H)<sup>+</sup> 459.34913, found: 459.35078.





*Figure S28:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **2b** and P(*n*Bu)<sub>3</sub>.



*Figure S29:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz, D<sub>1</sub> = 25 sec., aq. Time = 0.66 sec., zg 90) of **2b** and P(*n*Bu)<sub>3</sub> after keeping the sample at room temperature for 36 h.

## Trapping of the sulfur-containing products from the decomposition of 2b using PPh<sub>3</sub> and 1a:

In an NMR tube **1b** (30 mg, 0.064 mmol, 1 eq.) and DABSO (8 mg, 0.032 mmol, 0.5 eq.) were dissolved in C<sub>6</sub>D<sub>6</sub> and the sample was kept at room temperature for 24 h. The <sup>31</sup>P NMR spectrum showed the formation of **3b-5b** (*cf.* Figure S24). PPh<sub>3</sub> (50 mg, 0.190 mmol, 3 eq.) was added to the NMR tube and the sample was kept for 5 h at room temperature. The NMR spectrum of the mixture showed new singlets for SPPh<sub>3</sub> in addition to small amounts of OPPh<sub>3</sub> (Figure S30), which might result from the presence of elemental sulfur or polysulfuroxides in the mixture. To identify SO<sub>2</sub> in the mixture, **1a** (30 mg, 0.095 mmol, 1.5 eq.) was added to the NMR tube. In addition to the previously observed species, the <sup>31</sup>P NMR spectrum show the characteristic signals from the decomposition of the phosphine-SO<sub>2</sub> adduct **3a-5a** in about equimolar amounts (Figure S31).



*Figure S30:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz, D<sub>1</sub> = 25 sec., aq. Time = 0.66 sec., zg 90) after adding of PPh<sub>3</sub> and storing the NMR tube for 5 h at room temperature.



*Figure S31:* <sup>31</sup>P NMR spectrum ( $C_6D_6$ , 300 K, 162 MHz,  $D_1 = 25$  sec., aq. Time = 0.66 sec., zg 90) after adding of **1a** and storing the NMR tube for 3 h at room temperature.

# Preparation of phosphine sulfide 3c

Phosphine sulfide 3c was prepared from the reaction of the phosphine 1c with elemental sulfur according to



a previously published procedure for **3a** and **3b**:<sup>[4]</sup> A solution of **1c** (30 mg, 0.049 mmol, 1 eq.) in C<sub>6</sub>D<sub>6</sub> was added to S<sub>8</sub> (2 mg, 0.072 mmol, 1.6 eq.). The solution was filtered from the excess of S<sub>8</sub> and analyzed by NMR spectroscopy, which showed quantitative conversion of **1c**.

<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 5.88$  (s, br, 6H, NCHMe<sub>2</sub>), 1.81 (s, 18H, CH<sub>3</sub>), 1.44 ppm (d, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 36H, NCHCH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 146.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 4.1 Hz, N<sub>2</sub>CN), 116.1 (C=C), 46.4 (s, NCHMe<sub>2</sub>), 22.3 (NCH(*C*H<sub>3</sub>)<sub>2</sub>), 10.1 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta = 20.6$  ppm (s).

**HRMS (ESI)**: m/z calculated for  $[C_{33}H_{61}N_9PS]^+$  (M+H)<sup>+</sup> 646.45028, found 646.45063.



*Figure S32:* <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of **3c**.



*Figure S34:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **3c**.

Herein, the <sup>31</sup>P NMR spectra of the previously published phosphine sulfides **3a** and **3b** are displayed for comparison.<sup>[4]</sup>



*Figure S35:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **3a**.



*Figure S36:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **3b**.

After pressurizing a solution of phosphine sulfide **3b** in  $C_6D_6$  with 2 bar SO<sub>2</sub> at room-temperature the signal for **3b** showed up at 50.2 ppm in the <sup>31</sup>P NMR spectrum. The downfield-shift in the <sup>31</sup>P NMR spectrum is explained by the SO<sub>2</sub>–complexation *via* the imine-N atoms of **3b** due to the excess of SO<sub>2</sub>.

# Preparation of phosphine oxides 4a-c

**General procedure:** The reactions were performed in Wilmad® low pressure/vacuum NMR tubes purchased from Sigma Aldrich. Phosphine oxides **4a**, **4b** and **4c** were prepared by pressurizing phosphines **1a**, **1b** and **1c** with 2 bar nitrous oxide ( $N_2O$ ) in the solvent indicated. The NMR tube containing a solution of the phosphine was frozen in liquid nitrogen and the argon atmosphere in the tube was removed *in vacuo*. After warming the solution up to room temperature, the NMR tube was pressurized with 2 bar  $N_2O$ . In all cases NMR analysis showed quantitative formation of the respective phosphine oxide **4a-c**.

It is worth mentioning that the reaction of the less basic alkyl- or aryl phosphines with  $N_2O$  required much harsher conditions (100-140 bar  $N_2O$ , supercritical  $N_2O$ ).<sup>[5]</sup>

**Compound 4a**: A solution of **1a** (30 mg, 0.096 mmol) in  $C_6D_6$  was pressurized with 2 bar  $N_2O$ . Full conversion was observed at 80 °C for 12 hours.



<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.55 (s, br, 2H, NCHMe<sub>2</sub>), 2.07 (dsept, <sup>2</sup>*J*<sub>PH</sub> = 10.7 Hz <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 2H, PCHMe<sub>2</sub>), 1.65 (s, 6H, CH<sub>3</sub>), 1.39 (dd, <sup>3</sup>*J*<sub>PH</sub> = 15.2 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHCH<sub>3</sub>), 1.26 (dd, <sup>3</sup>*J*<sub>PH</sub> = 14.9 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHCH<sub>3</sub>), 1.23 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 12H, NCHCH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 147.5 (N<sub>2</sub>CN), 116.4 (C=C), 46.3 (NCHMe<sub>2</sub>), 28.2 (d, <sup>1</sup>*J*<sub>PC</sub> = 95.8 Hz, PCHMe<sub>2</sub>), 21.5 (s, NCH(*C*H<sub>3</sub>)<sub>2</sub>), 17.2 (m, PCH(*C*H<sub>3</sub>)<sub>2</sub>), 9.9 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta$  = 33.4 ppm (m).

**HRMS (ESI)**: m/z calculated for  $[C_{17}H_{34}N_3PONa]^+$  (M+Na)<sup>+</sup> 350.23317, found 350.23298.



*Figure S37:* <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of **4a**.



*Figure S38:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of **4a**.



*Figure S39:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **4a**.

**Compound 4b:** A solution of **1b** (30 mg, 0.064 mmol) in  $C_6D_6$  was pressurized with 2 bar  $N_2O$ . Full conversion was observed after 5 hours at room temperature or 1 hour at 60 °C.



<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 5.66$  (s, br, 4H, NCHMe<sub>2</sub>), 2.53 (dsept, <sup>2</sup>*J*<sub>PH</sub> = 17.1 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 1H, PCHMe<sub>2</sub>), 1.72 (s, 12H, CH<sub>3</sub>), 1.68 (dd, <sup>3</sup>*J*<sub>PH</sub> = 16.6 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHCH<sub>3</sub>), 1.33 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 12H, NCHCH<sub>3</sub>), 1.28 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 12H, NCHCH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 146.5$  (N<sub>2</sub>CN), 115.7 (C=C), 46.1 (NCHMe<sub>2</sub>), 33.3 (d, <sup>1</sup>J<sub>PC</sub> = 143.0 Hz, PCHMe<sub>2</sub>), 21.8 (m, NCH(CH<sub>3</sub>)<sub>2</sub>), 19.1 (s, PCH(CH<sub>3</sub>)<sub>2</sub>), 19.0 (s, PCH(CH<sub>3</sub>)<sub>2</sub>), 10.0 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta = 11.2$  ppm (m).

**HRMS (ESI)**: m/z calculated for  $[C_{25}H_{48}N_6PO]^+$  (M+H)<sup>+</sup> 479.36217, found 479.36191.



*Figure S41:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of **4b**.



*Figure S42:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **4b**.

After pressurizing a solution of phosphine oxide **4b** in  $C_6D_6$  with 2 bar SO<sub>2</sub> at room-temperature the signal for **4b** showed up at 12.9 ppm in the <sup>31</sup>P NMR spectrum. The downfield-shift in the <sup>31</sup>P NMR spectrum is explained by the SO<sub>2</sub>–complexation *via* the imine-N atoms of **4b** due to the excess of SO<sub>2</sub>.

**Compound 4c:** A solution of **1c** (30 mg, 0.049 mmol) in C<sub>6</sub>D<sub>6</sub> was pressurized with 2 bar N<sub>2</sub>O. Full conversion was observed after 5 minutes at room temperature.



<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.75 (s, br, 6H, NCHMe<sub>2</sub>), 1.80 (s, 18 H, CH<sub>3</sub>), 1.40 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 36 H, NCHCH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 146.2 (d, <sup>2</sup>*J*<sub>PC</sub> = 5.9 Hz, N<sub>2</sub>CN), 115.2 (C=C), 45.9 (N*C*HMe<sub>2</sub>), 22.1 (NCH(*C*H<sub>3</sub>)<sub>2</sub>), 10.2 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta = -11.9$  ppm (s).

**HRMS** (ESI): m/z calculated for  $[C_{33}H_{61}N_9OP]^+$  (M+H)<sup>+</sup> 630.47312, found 630.47335.



*Figure S44:*  ${}^{13}C{}^{1}H$  NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of 4c.



*Figure S45:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **4c**.

# Preparation of phosphine-SO<sub>3</sub> adducts **5a-b** and PtBu<sub>3</sub>–SO<sub>3</sub>

Phosphine–SO<sub>3</sub> adducts **5a**, **5b** and  $PtBu_3$ –SO<sub>3</sub> were prepared from the reaction of phosphines **1a** and **1b** with pyridine–SO<sub>3</sub> according to the following procedure: A solution of the phosphine in the solvent indicated was added to pyridine–SO<sub>3</sub> and the reaction mixture was stirred for 30 minutes at room temperature (5a and 5b) or at 60 °C (PtBu<sub>3</sub>–SO<sub>3</sub>). All volatiles were removed *in vacuo* and the residue was analyzed by NMR spectroscopy, which showed quantitative formation of phosphine–SO<sub>3</sub> adducts 5a, 5b and PtBu<sub>3</sub>-SO<sub>3</sub>.

The reaction of phosphine 1c with pyridine– $SO_3$  under the same conditions is unselective, and multiple phosphorus-containing species were detected in the <sup>31</sup>P NMR spectrum (Figure S49).

**Compound** PtBu<sub>3</sub>–SO<sub>3</sub>: A solution of PtBu<sub>3</sub> (30 mg, 0.148 mmol, 1 eq.) in benzene (3 mL) was added to

tBu<sup>−</sup>P<sup>+</sup>∖<sup>−</sup>tBu tBu

pyridine–SO<sub>3</sub> (24 mg, 0.148 mmol, 1 eq.) <sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 1.31$  (d, <sup>3</sup>*J*<sub>PH</sub> = 13.5 Hz).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 40.6$  (d, <sup>1</sup>J<sub>PC</sub> = 11.8 Hz, C(CH<sub>3</sub>)<sub>3</sub>), 30.0 (s, CH<sub>3</sub>).

<sup>31</sup>**P** NMR (161.9 MHz,  $C_6D_6$ ):  $\delta = 59.7$  ppm (s).

**HRMS (ESI)**: m/z calculated for  $[S_2P_2O_6H_{54}C_{24}Na]^+$  (2M+Na)<sup>+</sup> 587.27292, found 587.27297.



*Figure S46:* <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of PtBu<sub>3</sub>–SO<sub>3</sub>.



*Figure S47:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of PtBu<sub>3</sub>–SO<sub>3</sub>.



*Figure S48:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of PtBu<sub>3</sub>–SO<sub>3</sub>.

**Compound 5a**: A solution of **1a** (25 mg, 0.080 mmol, 1 eq.) in THF (3 mL) was added to pyridine–SO<sub>3</sub> (13 mg, 0.080 mmol, 1 eq.)



<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 5.06 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 2H, NC*H*Me<sub>2</sub>), 2.62 (dsept, <sup>2</sup>*J*<sub>PH</sub> = 9.1 Hz <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 2H, PC*H*Me<sub>2</sub>), 1.61(s, 6H, CH<sub>3</sub>), 1.50 (dd, <sup>3</sup>*J*<sub>PH</sub> = 16.6 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHC*H*<sub>3</sub>), 1.27 (dd, <sup>3</sup>*J*<sub>PH</sub> = 16.0 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHC*H*<sub>3</sub>), 1.19 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 12H, NCHC*H*<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 144.5 (N<sub>2</sub>CN), 118.8 (C=C), 47.5 (N*C*HMe<sub>2</sub>), 27.6 (d, <sup>1</sup>*J*<sub>PC</sub> = 51.2 Hz, P*C*HMe<sub>2</sub>), 21.3 (NCH(*C*H<sub>3</sub>)<sub>2</sub>), 16.8 (m, PCH(*C*H<sub>3</sub>)<sub>2</sub>, 9.8 ppm (CH<sub>3</sub>).

<sup>31</sup>**P NMR** (161.9 MHz,  $C_6D_6$ ):  $\delta$  = 37.6 ppm (m).

**HRMS** (ESI): m/z calculated for  $[S_2P_2O_6N_6H_{68}C_{34}Na]^+$  (2M+Na)<sup>+</sup> 805.40092, found 805.40178.



*Figure S50:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of **5a**.



*Figure S51:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **5a**.

**Compound 5b**: A solution of **1b** (30 mg, 0.065 mmol, 1 eq.) in THF (3 mL) was added to pyridine–SO<sub>3</sub> (10 mg, 0.065 mmol, 1 eq.).



<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 5.19$  (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 4H, NC*H*Me<sub>2</sub>), 2.77 (dsept, <sup>2</sup>*J*<sub>PH</sub> = 11.9 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 1H, PC*H*Me<sub>2</sub>), 1.76 (s, 12H, CH<sub>3</sub>), 1.62 (dd, <sup>3</sup>*J*<sub>PH</sub> = 17.6 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 6H, PCHC*H*<sub>3</sub>), 1.26 ppm (m, 24H, NCHC*H*<sub>3</sub>),

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 150.1$  (N<sub>2</sub>CN), 118.3 (C=C), 47.6 (NCHMe<sub>2</sub>), 31.3 (d, <sup>1</sup>J<sub>PC</sub> = 93.9 Hz, PCHMe<sub>2</sub>), 21.5 (s, NCH(CH<sub>3</sub>)<sub>2</sub>), 17.5 (m, PCH(CH<sub>3</sub>)<sub>2</sub>), 9.6 ppm (CH<sub>3</sub>).

<sup>31</sup>**P** NMR (161.9 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = 10.4$  ppm (m). HRMS (ESI): m/z calculated for  $[C_{25}H_{48}N_6O_3PS]^+$  (M+H)<sup>+</sup> 543.32407, found 543.32522.



*Figure S52:* <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 400 MHz) of **5b**.



*Figure S53:* <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 101 MHz) of **5b**.





*Figure S54:* <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of **5b**.

After pressurizing a solution of phosphine **5b** in  $C_6D_6$  with 2 bar SO<sub>2</sub> at room-temperature the signal of **5b** showed up at 9.4 ppm in the <sup>31</sup>P NMR spectrum. The upfield-shift in the <sup>31</sup>P NMR spectrum is explained by the SO<sub>2</sub>–complexation *via* the imine-N atoms of **5b** due to the excess of SO<sub>2</sub>.



Figure S55: <sup>31</sup>P NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 300 K, 162 MHz) of the reaction mixture of 1c with pyridine–SO<sub>3</sub>.

# X-ray Diffraction Studies

**General:** Single-crystal X-ray diffraction data were collected on a Bruker AXS detector using Mo-K<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å). Crystals were selected under oil, mounted on nylon loops and then immediately placed in a cold stream of N<sub>2</sub> on a diffractometer. Using Olex2,<sup>9</sup> the structures were solved with the Superflip<sup>10</sup> structure solution program using Charge Flipping and refined with the ShelXL<sup>11</sup> refinement package using Least Squares minimisation.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1837294 (**2b**), CCDC-1837295 (**2c**), CCDC-1837296 (**5a**), CCDC-1837297 (*t*Bu<sub>3</sub>P-SO<sub>3</sub>). These data can be obtained free of charge via www.ccdc.cam.uk/data\_request/cif (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

# Single-crystal X-ray structure analysis of 2c:

Single crystals were obtained by cooling down a hot solution of 2c in THF. A Single-crystal X-ray structure analysis revealed that 2c crystallizes in the cubic space group *I*-43*d*. The asymmetric unit contains one molecule of 2c.



*Figure S56:* Molecular view of **2c** in the solid state with thermal ellipsoid plot at the 50% levels of probability. Hydrogen atoms are omitted for clarity.

| CCDC number           | 1837295      | m/mm <sup>-1</sup>                  | 0.173                                                                  |
|-----------------------|--------------|-------------------------------------|------------------------------------------------------------------------|
| Empirical formula     | C33H60N9O2PS | F(000)                              | 5888.0                                                                 |
| Formula weight        | 677.93       | Crystal size/mm <sup>3</sup>        | $0.08\times0.06\times0.06$                                             |
| Temperature/K         | 100(2)       | Radiation                           | MoKa ( $\lambda = 0.71073$ )                                           |
| Crystal system        | cubic        | $2\Theta$ range for data collection | 7.426 to 52.718                                                        |
| Space group           | I-43d        | Index ranges                        | -20 $\leq$ h $\leq$ 27, -28 $\leq$ k $\leq$ 25, -29 $\leq$ l $\leq$ 30 |
| a/Å                   | 24.5396(3)   | Reflections collected               | 41644                                                                  |
| b/Å                   | 24.5396(3)   | Independent reflections             | 2505 [ $R_{int} = 0.0526$ , $R_{sigma} = 0.0282$ ]                     |
| c/Å                   | 24.5396(3)   | Data/restraints/parameters          | 2505/0/148                                                             |
| α/°                   | 90           | Goodness-of-fit on F <sup>2</sup>   | 1.084                                                                  |
| β/°                   | 90           | Final R indexes [I>=2 $\sigma$ (I)] | $R_1 = 0.0441,  wR_2 = 0.0926$                                         |
| $\gamma/^{\circ}$     | 90           | Final R indexes [all data]          | $R_1 = 0.0543, wR_2 = 0.0968$                                          |
| Volume/Å <sup>3</sup> | 14777.6(5)   | Largest diff. peak/hole / e Å-3     | 0.23/-0.21                                                             |
| Z                     | 16           | Flack parameter                     | -0.01(3)                                                               |
| $\rho_{calc}mg/mm^3$  | 1.219        |                                     |                                                                        |

| Table S1. | Crystal | data and | structure | refinement | for | 2c. |
|-----------|---------|----------|-----------|------------|-----|-----|
|-----------|---------|----------|-----------|------------|-----|-----|

# Single-crystal X-ray structure analysis of 2b:

Single crystals were obtained by slow diffusion of *n*-hexane in a solution of **2b** in benzene. A Single-crystal X-ray structure analysis revealed that **2b** crystallizes in the monoclinic space group  $P2_1/c$ . The asymmetric unit contains one molecule of **2b**. The SO<sub>2</sub> unit is disordered over two positions (occupancies: 91:9).



*Figure S57:* Molecular view of **2b** in the solid state with thermal ellipsoid plot at the 50% levels of probability. Hydrogen atoms are omitted for clarity.

| Table S2 | . Crystal | data and | structure | refinement | for 2 | 2b. |
|----------|-----------|----------|-----------|------------|-------|-----|
|----------|-----------|----------|-----------|------------|-------|-----|

| CCDC number           | 1837294      | m/mm <sup>-1</sup>                          | 0.195                                                                         |
|-----------------------|--------------|---------------------------------------------|-------------------------------------------------------------------------------|
| Empirical formula     | C25H47N6O2PS | F(000)                                      | 1144.0                                                                        |
| Formula weight        | 526.71       | Crystal size/mm <sup>3</sup>                | $0.47\times0.16\times0.05$                                                    |
| Temperature/K         | 100(2)       | Radiation                                   | MoKα ( $\lambda = 0.71073$ )                                                  |
| Crystal system        | monoclinic   | $2\Theta$ range for data collection         | 4.022 to 56.594°                                                              |
| Space group           | $P2_{1}/c$   | Index ranges                                | $\text{-19} \le h \le 19,  \text{-12} \le k \le 12,  \text{-27} \le l \le 27$ |
| a/Å                   | 14.9831(2)   | Reflections collected                       | 38731                                                                         |
| b/Å                   | 9.7363(2)    | Independent reflections                     | 7311 [ $R_{int} = 0.0278$ , $R_{sigma} = 0.0201$ ]                            |
| c/Å                   | 20.8595(3)   | Data/restraints/parameters                  | 7311/0/349                                                                    |
| α/°                   | 90           | Goodness-of-fit on F <sup>2</sup>           | 1.026                                                                         |
| β/°                   | 103.8892(8)  | Final R indexes $[I \ge 2\sigma(I)]$        | $R_1=0.0353,wR_2=0.0870$                                                      |
| $\gamma/^{\circ}$     | 90           | Final R indexes [all data]                  | $R_1 = 0.0430, wR_2 = 0.0912$                                                 |
| Volume/Å <sup>3</sup> | 2954.01(8)   | Largest diff. peak/hole / e Å <sup>-3</sup> | 0.37/-0.31                                                                    |
| Z                     | 4            |                                             |                                                                               |
| $\rho_{calc}mg/mm^3$  | 1.184        |                                             |                                                                               |

## Single-crystal X-ray structure analysis of 5a:

Single crystals were obtained by slow diffusion of *n*-Hexane in a solution of **5a** in THF. A Single-crystal X-ray structure analysis revealed that **5a** crystallizes in the orthorhombic space group  $P2_12_12_1$ . The asymmetric unit contains one molecule of **5a**.



*Figure S58:* Molecular view of **5a** in the solid state with thermal ellipsoid plot at the 50% levels of probability. Hydrogen atoms are omitted for clarity; thermal ellipsoids are set at 50% probability. Selected bond length [Å] and angles [°]: P–S 2.1809(4), S–O1 1.4524(10), S–O2 1.4518(11), S–O3 1.4540(10), P– N1 1.5799(11), O1–S–O2 114.59(6), O1–S–O3 114.31(7), O2–S–O3 114.08(6), P–S–O1 103.18(4), P–S–O2 106.45(4), P–S–O3 102.42(5).

Table S3. Crystal data and structure refinement for 5a.

| CCDC number           | 1837296            | $\mu/mm^{-1}$                       | 0.253                                                                                                           |
|-----------------------|--------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Empirical formula     | C17H34N3O3PS       | F(000)                              | 848.0                                                                                                           |
| Formula weight        | 391.50             | Crystal size/mm <sup>3</sup>        | $0.57 \times 0.27 \times 0.21$                                                                                  |
| Temperature/K         | 100                | Radiation                           | MoKa ( $\lambda = 0.71073$ )                                                                                    |
| Crystal system        | orthorhombic       | $2\Theta$ range for data collection | 3.61 to 60.972                                                                                                  |
| Space group           | $P2_{1}2_{1}2_{1}$ | Index ranges                        | $\text{-13} \leq h \leq \text{13},  \text{-14} \leq k \leq \text{14},  \text{-32} \leq \text{I} \leq \text{32}$ |
| a/Å                   | 9.35040(10)        | Reflections collected               | 37810                                                                                                           |
| b/Å                   | 9.84690(10)        | Independent reflections             | $6329 [R_{int} = 0.0241, R_{sigma} = 0.0157]$                                                                   |
| c/Å                   | 22.5631(3)         | Data/restraints/parameters          | 6329/0/236                                                                                                      |
| α/°                   | 90                 | Goodness-of-fit on F <sup>2</sup>   | 1.097                                                                                                           |
| β/°                   | 90                 | Final R indexes [I>=2 $\sigma$ (I)] | $R_1 = 0.0219, wR_2 = 0.0607$                                                                                   |
| $\gamma/^{\circ}$     | 90                 | Final R indexes [all data]          | $R_1 = 0.0223, wR_2 = 0.0610$                                                                                   |
| Volume/Å <sup>3</sup> | 2077.44(4)         | Largest diff. peak/hole / e Å-3     | 0.33/-0.22                                                                                                      |
| Z                     | 4                  | Flack parameter                     | -0.002(10)                                                                                                      |
| $\rho_{calc}mg/mm^3$  | 1.252              |                                     |                                                                                                                 |

## Single-crystal X-ray structure analysis of *t*Bu<sub>3</sub>P-SO<sub>3</sub>:

Single crystals were obtained by slow diffusion of *n*-Hexane in a solution of  $tBu_3P-SO_3$  in benzene. A Single-crystal X-ray structure analysis revealed that  $tBu_3P-SO_3$  crystallizes in the monoclinic space group  $P2_1/n$ . The asymmetric unit contains one molecule of  $tBu_3P-SO_3$ .



*Figure S59:* Molecular view of *t*Bu<sub>3</sub>P-SO<sub>3</sub> in the solid state with thermal ellipsoid plot at the 50% levels of probability. Hydrogen atoms are omitted for clarity; thermal ellipsoids are set at 50% probability. Selected bond length [Å] and angles [°]: P–S 2.2098(3), S–O1 1.4477(7), S–O2 1.4479(7), S–O3 1.4465(7), O1–S–O2 114.43(4), O1–S–O3 114.62(4), O2–S–O3 114.79(4), P–S–O1 103.89(3), P–S–O2 103.35(3), P–S–O3 103.69(3).

| Table S4. | Crystal | data and | structure | refinement | for | tBu <sub>3</sub> P- | SO <sub>3</sub> . |
|-----------|---------|----------|-----------|------------|-----|---------------------|-------------------|
|           | ~       |          |           |            |     |                     |                   |

| CCDC number           | 1837297             | $\mu/mm^{-1}$                               | 0.321                                                 |
|-----------------------|---------------------|---------------------------------------------|-------------------------------------------------------|
| Empirical formula     | $C_{12}H_{27}O_3PS$ | F(000)                                      | 616.0                                                 |
| Formula weight        | 282.36              | Crystal size/mm <sup>3</sup>                | $0.27\times0.17\times0.1$                             |
| Temperature/K         | 100                 | Radiation                                   | MoKa ( $\lambda = 0.71073$ )                          |
| Crystal system        | monoclinic          | $2\Theta$ range for data collection         | 7.814 to 61.018                                       |
| Space group           | $P2_{1}/n$          | Index ranges                                | $-11 \le h \le 9, -16 \le k \le 19, -19 \le l \le 19$ |
| a/Å                   | 8.04457(8)          | Reflections collected                       | 16409                                                 |
| b/Å                   | 13.7032(1)          | Independent reflections                     | 4532 [ $R_{int} = 0.0165$ , $R_{sigma} = 0.0153$ ]    |
| c/Å                   | 13.5041(1)          | Data/restraints/parameters                  | 4532/0/163                                            |
| α/°                   | 90                  | Goodness-of-fit on F <sup>2</sup>           | 1.057                                                 |
| β/°                   | 91.7658(4)          | Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0244,  wR_2 = 0.0693$                        |
| $\gamma/^{\circ}$     | 90                  | Final R indexes [all data]                  | $R_1=0.0262,wR_2=0.0708$                              |
| Volume/Å <sup>3</sup> | 1487.96(2)          | Largest diff. peak/hole / e Å <sup>-3</sup> | 0.42/-0.27                                            |
| Z                     | 4                   |                                             |                                                       |
| $\rho_{calc}mg/mm^3$  | 1.260               |                                             |                                                       |
|                       |                     |                                             |                                                       |

## Preliminary Single-crystal X-ray structure analysis of 4c·3SO<sub>2</sub>:

Single crystals were obtained by pressurizing a THF solution of **2c** with 1 bar SO<sub>2</sub> at 0 °C and diffusion of *n*-hexane in the reaction mixture at –40 °C over 2 days. Attempts to obtain better crystal by recrystallization were not successful. Single-crystal X-ray structure analysis revealed that **4c·3SO<sub>2</sub>** crystallizes in the monoclinic space group *C*2/*c*. The asymmetric unit contains a molecule of **4c·3SO<sub>2</sub>** coordinated to three SO<sub>2</sub> molecules via rather short N–S bond distances [N1–S2 1.962(13) Å, N7–S3 1.962(14) Å] and a long O–S bond distances [O1–S1 2.547(13) Å].



*Figure S60:* Two molecular views of the preliminary solid-state structure of  $4c \cdot 3SO_2$  showing the interaction of three donor atoms of the phosphine oxide with SO<sub>2</sub> molecules. (Isopropyl and methyl groups are omitted in the right picture for clarity).

# **DFT** Calculations

All structures were optimized without geometry constraints using the meta-GGA TPSS or (only for  ${}^{1}\Delta$  SO) the TPSSh hybrid functional<sup>12</sup> and an atom-pairwise dispersion correction (D3)<sup>13,14</sup>. A flexible triple zeta basis set (def2-TZVP)<sup>15</sup> was used in all calculations. In all calculations, the COSMO model<sup>16</sup> for implicit solvation was applied with a dielectric constant of 7.58 (THF). For the calculation of the free energy contributions (G<sup>RRHO</sup>(298K)), a rotor approximation was applied for vibrational modes with wave numbers below 100 cm<sup>-1.17</sup> The nature of all optimized stationary points was proven by the presence of either 0 (minimum) or 1 (transition structure) imaginary vibrational frequency. The character of TS<sub>B-C</sub> was further proven by a calculation of the intrinsic reaction coordinate (IRC). Electronic energies were recalculated with the hybrid functional PW6B95(-D3)<sup>18</sup> using the structures optimized with TPSS-D3. The final value for the free enthalpy  $\Delta$ G(298) was obtained using the PW6B95-D3 electronic energies and G<sup>RRHO</sup>(298K), obtained with TPSS-D3 and COSMO solvation (THF). All calculations were performed with the TURBOMOLE 7.2 program.<sup>19</sup>

**Table S5** reports the calculated electronic energies and free energy corrections at 298 K. **Figure S55** depicts the conformations and most important interatomic distance of the intermediates of the reaction of phosphine A with SO<sub>2</sub>, followed by a listing of cartesian coordinates for all calculated stationary points.



**Table S5.**Electronic energies (E) and thermodynamic correction to the Gibbs Free Energy atT = 298.15 K (G298) for the structures involved in the reactions.

| Structure               | E(TPSS-D3) <sup>[a]</sup> | G <sup>RRHO</sup> (298) <sup>[a]</sup> | E(PW6B95-D3) <sup>[a][b]</sup> | $\Delta G(298)^{[c]}$ |
|-------------------------|---------------------------|----------------------------------------|--------------------------------|-----------------------|
|                         | $[E_h]$                   | [kcal/mol]                             | $[E_h]$                        | [kcal/mol]            |
| $SO_2$                  | -548.759549               | -11.46                                 | -549.197418                    | -                     |
| ${}^{1}\Delta SO^{[d]}$ | (-473.384964)             | (-11.44)                               | -473.773039                    | -                     |
| $^{3}\Sigma^{-}SO$      | -473.449114               | -11.49                                 | -473.816133                    | -                     |
| $S_8$                   | -3185.946387              | -16.62                                 | -3188.316614                   | -                     |
| Α                       | -859.784677               | 136.69                                 | -860.589611                    | 0.0                   |
| В                       | -1408.582417              | 140.04                                 | -1409.823680                   | -8.2                  |
| TS <sub>B-C</sub>       | -1408.551107              | 139.78                                 | -1409.789643                   | +12.9                 |
| С                       | -1408.578119              | 139.46                                 | -1409.824373                   | -9.2                  |
| D                       | -935.125254               | 138.64                                 | -936.006253                    | $+6.8/-20.3^{[e]}$    |
| Ε                       | -1408.596684              | 141.23                                 | -1409.843143                   | -19.2                 |
| $\mathbf{F}$            | -1483.878513              | 141.93                                 | -1485.199139                   | -58.9 <sup>[f]</sup>  |

[a] All energies and the free enthalpy corrections have been calculated with the def2-TZVP basis set with an implicit solvent model (COSMO,  $\varepsilon = 7.58$ )

[b] Energy calculation using the structure optimized with TPSS-D3/def2-TZVP

[c]  $\Delta G(298) = \Delta E(PW6B95-B3) + \Delta G^{RRHO}(298K, TPSS-D3)$ . The value corresponds to the relative  $\Delta G$  for the formation of the intermediate from A and SO<sub>2</sub>.

[d] The  ${}^{1}\Delta$  SO molecule was optimized with the (hybrid) functional TPSSh-D3, the electronic structure could not be converged with TPSS-D3.

[e] with  ${}^{1}\Delta$  SO and  ${}^{3}\Sigma^{-}$  SO, respectively

[f]  $\Delta G(298)$  for the reaction  $\mathbf{A} + SO_2 + {}^{3}\Sigma^{-}SO \rightarrow \mathbf{F} + 1/8 S_8$ .

**Figure S55**. Optimized structures (TPSS-D3/def2-TZVP+COSMO( $\epsilon$ =7.58)) of the intermediates during the reaction of phosphine **A** with SO<sub>2</sub>. (<sup>1</sup> $\Delta$  SO has been optimized with TPSSh-D3/def2-TZVP)





B



TS<sub>B-C</sub>





E





```
SO<sub>2</sub>
E(TPSS-D3/def2-TZVP) = -548.7595489211 (conv)
Lowest Freq. = 494.17 cm<sup>-1</sup>
3
SO2 (SO2/c1/tpss-d3.def2-TZVP_COSMO_7.58)
S 0.0000000 -0.3170546 -0.0817435
O 0.0000000 0.2193040 1.2714446
O 0.0000000 0.6269278 -1.1897012
```

### $^{1}\Delta$ SO

E(TPSSh-D3/def2-TZVP) = -473.3849637510 (conv)
Lowest Freq. = 1140.74 cm^-1
2
1SO (SO/c1/tpssh-d3.def2-TZVP\_COSMO\_7.58)
S 0.0000000 -0.2603669 -0.3314153
O 0.0000000 0.1655555 1.1029119

## $^{3}\Sigma^{-}SO$

```
E(TPSS-D3/def2-TZVP) = -473.4491138585 (conv)
Lowest Freq. = 1111.31 cm^-1
2
SO (SO/c1/tpss-d3.def2-TZVP_COSMO_7.58)
S     0.0000000  -0.3186193  -0.1040781
O     0.0000000  0.2238079  1.2994509
```

#### $S_8$

```
E(TPSS-D3/def2-TZVP) = -3185.946386685 (conv)
Lowest Freq. = 67.98 \text{ cm}^{-1}
8
S8 (S8/c1/tpss-d3.def2-TZVP COSMO 7.58)
S
     0.0383450
                2.9550746 -1.1886141
S
     1.3119537
               -0.1401807 -0.8708668
S
    -1.8251270
                 3.0360209 -0.2915661
S
    -3.1221569
                -0.0595806 -0.0955541
S
    -1.7951834
               -1.4232600 -0.9102006
S
    -3.0685743
                1.6719383 -1.2280317
S
    -0.0242637 -1.3402897 0.1577530
               1.7550226 -0.0398907
S
    1.2730400
```

### А

E(TPSS-D3/def2-TZVP) = -859.7846766353 (conv) Lowest Freq. = 14.39 cm<sup>-1</sup> 31 A (001/c1b/tpss-d3.def2-TZVP\_COSMO\_7.58) P -0.7944955 -2.2197281 1.5114545 N -0.9972437 -0.6588470 0.8798866 C -2.2114663 -2.2139218 2.6988789 C -0.1341593 0.0895298 0.2467574

| Ν | -0.3109062 | 1.4562946  | 0.0959313  |
|---|------------|------------|------------|
| Ν | 1.0448187  | -0.1788188 | -0.4342476 |
| С | 0.7036601  | 2.0093036  | -0.6968328 |
| С | -1.4343092 | 2.1745382  | 0.6727067  |
| С | 1.5464728  | 0.9966143  | -1.0302987 |
| С | 1.5842258  | -1.5047542 | -0.7030918 |
| С | 0.7452292  | 3.4639020  | -1.0158239 |
| Н | -1.0805167 | 3.0418100  | 1.2371020  |
| С | 2.8006955  | 0.9960375  | -1.8342218 |
| Н | 1.2075621  | -2.1994702 | 0.0480824  |
| Н | -0.1613693 | 3.7871590  | -1.5422341 |
| Н | 1.6037462  | 3.6813463  | -1.6551959 |
| Н | 0.8348230  | 4.0753797  | -0.1089206 |
| Н | 3.6659767  | 0.6788645  | -1.2380413 |
| Н | 3.0003539  | 2.0035649  | -2.2060182 |
| Н | 2.7323353  | 0.3243017  | -2.6989525 |
| С | -1.5769053 | -3.2911857 | 0.2071672  |
| Н | -0.9183696 | -3.3622434 | -0.6644622 |
| Н | -1.9817601 | -1.5461476 | 3.5349274  |
| Н | -3.1264713 | -1.8668969 | 2.2037149  |
| Н | -2.3673474 | -3.2250025 | 3.0918740  |
| Н | -1.7339027 | -4.3010272 | 0.6041102  |
| Н | -2.5397341 | -2.8697729 | -0.1070368 |
| Н | 1.2998895  | -1.8494278 | -1.7045796 |
| Н | 2.6734647  | -1.4778639 | -0.6273121 |
| Н | -1.9445110 | 1.4783218  | 1.3399876  |
| Н | -2.1297858 | 2.5081403  | -0.1053109 |

| В                                             |
|-----------------------------------------------|
| E(TPSS-D3/def2-TZVP) = -1408.582417370 (conv) |
| Lowest Freq. = 23.37 cm^-1                    |
| 34                                            |
| B (002/c3/tpss-d3.def2-TZVP_COSMO_7.58)       |
| S 0.5405765 1.9700679 -3.2462088              |
| P 1.1928709 0.8271309 -1.2586957              |
| 0 1.7271064 2.8964240 -3.2893394              |
| 0.6378791 0.8523859 -4.2525112                |
| N 0.3048230 -0.3606310 -0.6145225             |
| C -0.4766663 -1.3058603 -1.1061559            |
| N -1.6638948 -1.6793484 -0.5309432            |
| N -0.3006287 -2.1501134 -2.1694283            |
| C -2.2268752 -2.7511256 -1.2325108            |
| C -1.3791175 -3.0446296 -2.2597340            |
| C -3.5256225 -3.3577434 -0.8286531            |
| C -1.4710003 -4.0789829 -3.3271740            |
| H -3.4813995 -3.7602494 0.1904794             |
| H -3.7806155 -4.1755610 -1.5055178            |
| H -4.3395731 -2.6234474 -0.8609222            |
| H -1.4850646 -3.6279946 -4.3265391            |
| H -2.3926721 -4.6513863 -3.2025798            |
| H -0.6294266 -4.7809796 -3.2870759            |
| C 1.3347136 2.0931602 0.0342673               |
| H 1.8046227 1.6652467 0.9254288               |
| H 0.3357499 2.4563649 0.2891311               |
| H 1.9405635 2.9213700 -0.3426011              |

| С | 2.9187250  | 0.3772351  | -1.6426173 |
|---|------------|------------|------------|
| Н | 3.3794433  | -0.0867020 | -0.7653728 |
| Н | 3.4567796  | 1.2914571  | -1.9074486 |
| Н | 2.9534565  | -0.3108942 | -2.4887651 |
| С | -2.2435114 | -1.0171623 | 0.6295158  |
| Н | -3.2306293 | -0.6184106 | 0.3812894  |
| Н | -1.5735948 | -0.2019193 | 0.9032619  |
| Н | -2.3311913 | -1.7187176 | 1.4636106  |
| С | 0.8724141  | -2.1288512 | -3.0352487 |
| Н | 0.9522957  | -1.1568703 | -3.5359774 |
| Н | 0.7608086  | -2.9092210 | -3.7865961 |
| Н | 1.7697278  | -2.3293215 | -2.4433804 |
|   |            |            |            |

#### TSB-C

E(TPSS-D3/def2-TZVP) = -1408.551106993 (conv) Lowest Freq. = -118.15 cm<sup>-1</sup> 34 TSB-C (TS002-004/c1/tpss-d3.def2-TZVP COSMO 7.58) Ρ -0.1653635 -1.3612839 1.6405532 -0.7429526 Ν -0.6536144 0.2192421 С 0.1786240 -0.1725783 2.9805536 С 0.1221902 -0.1612184 -0.6948178 Ν 0.2703043 1.1842548 -0.8897025 -0.7585204 Ν 0.8195286 -1.7034008 С 1.0669194 1.4280172 -2.0149105 С -0.3304403 2.1964164 -0.0311326 С 1.4154663 0.2093088 -2.5211016 С 0.9362877 -2.2013875 -1.8753772 С 2.8092195 1.3933811 -2.4661597 -0.99878471.6811139 0.6591006 Η С 2.2498939 -0.1595388-3.6981857 0.2234515 -2.6778817 -1.2041702 Η Η 0.4897105 3.3699865 -2.7340799 -3.3457148 Η 2.0392529 2.7692550 Η 1.9161764 3.3740599 -1.6850901 Η 3.1021798 -0.7834627 -3.4044031 Η 2.6371671 0.7426916 -4.1762251 Η 1.6707896 -0.7173251 -4.4439056 С -2.0342767 2.1617684 -1.8098289 Η -2.0646103 -2.8818271 1.5178262 Η 0.9620485 0.5184842 2.6610830 Η -0.7349035 0.3757767 3.2293876 Η 0.5261112 -0.7086087 3.8703298 -1.7356405 -2.3860696 3.1962706 Η -2.5923115 -1.2729106 2.0789558 Η Η 0.7157958 -2.4622715 -2.9130353 Η 1.9418468 -2.5350941 -1.6097431 Η -0.9005615 2.9068803 -0.6341158 0.5303005 Η 0.4415996 2.7300697 S 1.1521210 -3.0893966 1.9384092 -1.5963555 Ο 1.5813138 1.2019283 0 0.8802303 -4.1615018 0.9070634

#### С E(TPSS-D3/def2-TZVP) = -1408.578119270 (conv) Lowest Freq. = $18.88 \text{ cm}^{-1}$ 34 C (004/c1/tpss-d3.def2-TZVP COSMO 7.58) -0.0266197 -1.1668600 1.9103011 Ρ 0.8463721 -0.0451291 1.1772476 Ν С 0.2404376 -0.9141923 3.6712022 С 0.9892405 0.1617420 -0.1340671 Ν 0.4084449 1.1642320 -0.8546408 Ν 1.8240724 -0.4830325 -0.9937950 С 0.8614260 1.1301852 -2.1795690 С -0.5552539 2.1069817 -0.3024387 С -2.2663987 1.7428464 0.0918301 С 2.6093086 -1.6602443 -0.6407221 2.1029562 С 0.3843962 -3.2011282 -0.5473558 1.9845820 0.7808845 Η С 2.5151229 -0.4405697 -3.4225279 Η 2.7242434 -1.67141350.4433008 -3.3275372 -0.7036304 2.0508434 Η -4.1651721 Η 0.8484207 1.8848223 Η 0.6394947 3.1340073 -2.9277602 Η 3.5961105 -0.3897109 -3.2461131 2.2908004 0.1424543 -4.3181390 Η 2.2575842 -1.4874557 -3.6217714 Η С -1.7932482-1.0052673 1.5539476 Η -1.9321920 -1.0985003 0.4727094 Η 1.2966603 -1.0845850 3.8960830 Η 0.1109590 3.9414506 -0.0260914 Η -0.3717694 -1.6193914 4.2390527 Η -2.3535876 -1.7986138 2.0557545 Η -2.1396316 -0.0249561 1.8934776 Н 2.0800593 -2.5617670 -0.9569525 Η 3.5877039 -1.5960514 -1.1200941 Η -1.5573785 1.9021080 -0.6896370 Η -0.2649582 3.1276269 -0.5606449 1.6429089 0 0.3913095 -2.6722998 S -0.4405078 -3.5758325 0.2149870

## D

Ο

-0.4316316

E(TPSS-D3/def2-TZVP) = -935.1252536583 (conv) Lowest Freq. =  $21.94 \text{ cm}^{-1}$ 32 E (005/c1/tpss-d3.def2-TZVP COSMO 7.58) Ρ -0.0151281 -1.3055112 1.8220926 Ν 0.4413625 0.0205760 0.9895215 С -0.4846324 -0.6105486 3.4313073 С 0.6898147 0.2483134 -0.2799467 Ν 0.6359469 1.5100380 -0.8300955 Ν 1.0776178 -0.5726772 -1.3158682 С 0.9821886 1.4755574 -2.1867298 С 0.2544477 2.6934269 -0.0745854 С 0.1776655 -2.4932109 1.2534571

-2.6061221

-0.9900512

| С | 1.3184777  | -2.0077178 | -1.2193446 |
|---|------------|------------|------------|
| С | 1.0038953  | 2.7072896  | -3.0237543 |
| Н | -0.0008255 | 2.3584455  | 0.9313174  |
| С | 1.6702742  | -0.4578065 | -3.7741305 |
| Н | 1.3772580  | -2.2874449 | -0.1647040 |
| Н | 0.0199168  | 3.1912007  | -3.0552966 |
| Н | 1.2907037  | 2.4568385  | -4.0472878 |
| Н | 1.7216836  | 3.4425328  | -2.6398709 |
| Н | 2.6608061  | -0.9225889 | -3.6944986 |
| Н | 1.7152214  | 0.2964027  | -4.5628422 |
| Н | 0.9639979  | -1.2362244 | -4.0875120 |
| С | -1.5728736 | -1.9159675 | 1.0882236  |
| Н | -1.3684604 | -2.3139678 | 0.0893600  |
| Н | 0.4019855  | -0.1569065 | 3.8848706  |
| Н | -1.2585044 | 0.1539493  | 3.3174008  |
| Н | -0.8494365 | -1.4094639 | 4.0840076  |
| Н | -1.9806738 | -2.7219299 | 1.7067431  |
| Н | -2.3082697 | -1.1099442 | 1.0069408  |
| Н | 0.5122664  | -2.5686993 | -1.7032873 |
| Η | 2.2649870  | -2.2483188 | -1.7093743 |
| Η | -0.6112452 | 3.1765680  | -0.5364759 |
| Н | 1.0851614  | 3.4038552  | -0.0274342 |
| 0 | 0.9745970  | -2.4369427 | 1.9920249  |

## Е

| Ε ( | (TPSS-D3/def2-TZ | VP) = -1408.5 | 96683700  | (conv) |
|-----|------------------|---------------|-----------|--------|
| Lc  | owest Freq. =    | 27.50 cm^-1   |           |        |
| 34  | Ł                |               |           |        |
| D   | (006/c1/tpss-d3  | .def2-TZVP CC | SMO 7.58) |        |
| Ρ   | -0.5529978       | -1.0511454    | 1.67802   | 216    |
| Ν   | 0.3419896        | 0.2943090     | 1.12110   | 51     |
| С   | 0.5025126        | -1.8737256    | 2.89360   | 56     |
| С   | 0.7373782        | 0.4053765     | -0.18327  | 11     |
| Ν   | 0.1462351        | 1.1726977     | -1.12960  | 07     |
| Ν   | 1.8115353        | -0.1802291    | -0.76238  | 808    |
| С   | 0.8549157        | 1.0740630     | -2.32433  | 808    |
| С   | -1.0369630       | 1.9983633     | -0.90516  | 585    |
| С   | 1.8998927        | 0.2161469     | -2.09515  | 00     |
| С   | 2.7132097        | -1.1123483    | -0.08124  | 02     |
| С   | 0.4489061        | 1.8185577     | -3.54768  | 844    |
| Н   | -1.8453421       | 1.6697510     | -1.56143  | 39     |
| С   | 2.9790335        | -0.2674749    | -2.99948  | 878    |
| Н   | 2.6742192        | -0.8952595    | 0.98656   | 507    |
| Н   | -0.5651085       | 1.5457351     | -3.86127  | 32     |
| Н   | 1.1328277        | 1.5879565     | -4.36641  | .91    |
| Н   | 0.4694774        | 2.9014798     | -3.37980  | 32     |
| Н   | 2.9659292        | -1.3595756    | -3.08633  | 842    |
| Н   | 3.9686701        | 0.0306133     | -2.63489  | 02     |
| Н   | 2.8427883        | 0.1561185     | -3.99627  | 73     |
| С   | -1.9177733       | -0.3151198    | 2.60605   | 35     |
| Н   | -2.5895025       | 0.1903755     | 1.90639   | 06     |
| Н   | 1.0293433        | -1.1278615    | 3.49684   | 55     |
| Н   | -0.1113075       | -2.5158511    | 3.53256   | 572    |
| Н   | 1.2348163        | -2.4894105    | 2.36445   | 54     |

| Н | -2.4655239 | -1.1050154 | 3.1286387  |
|---|------------|------------|------------|
| Н | -1.5265981 | 0.4054421  | 3.3298363  |
| Н | 2.4100167  | -2.1417297 | -0.2892605 |
| Н | 3.7274384  | -0.9439868 | -0.4437754 |
| Н | -0.7962063 | 3.0447867  | -1.1036365 |
| Н | -1.3306014 | 1.8813310  | 0.1367079  |
| 0 | -0.9774354 | -1.9147448 | 0.5268142  |
| S | 1.1475201  | 1.4151225  | 2.2961072  |
| 0 | 2.5308777  | 0.8048207  | 2.6667881  |
|   |            |            |            |

F

| - |                  |               |                  |  |
|---|------------------|---------------|------------------|--|
| Ε | (TPSS-D3/def2-TZ | VP) = -1483.8 | 878512576 (conv) |  |
| L | owest Freq. =    | 10.14 cm^-1   |                  |  |
| 3 | 5                |               |                  |  |
| F | (011/cla/tpss-d  | 3.def2-TZVP_( | COSMO_7.58)      |  |
| Ρ | -0.3799245       | -1.0967515    | 1.6700156        |  |
| Ν | -0.8498329       | -0.5195510    | 0.2541105        |  |
| С | -1.1239916       | -0.1462227    | 3.0107614        |  |
| С | -0.0991564       | -0.2533766    | -0.8190320       |  |
| Ν | 0.3412484        | 0.9759993     | -1.2032111       |  |
| Ν | 0.2912184        | -1.1166815    | -1.7963507       |  |
| С | 1.0371403        | 0.8811428     | -2.4126548       |  |
| С | 0.1564122        | 2.1876900     | -0.4127678       |  |
| С | 1.0087712        | -0.4331937    | -2.7839851       |  |
| С | 0.0537087        | -2.5538173    | -1.7424922       |  |
| С | 1.6521745        | 2.0704243     | -3.0641156       |  |
| Η | -0.6195626       | 1.9829150     | 0.3246614        |  |
| С | 1.5874670        | -1.1268657    | -3.9676535       |  |
| Η | -0.8683537       | -2.7236871    | -1.1851177       |  |
| Η | 0.8972883        | 2.8195338     | -3.3309847       |  |
| Η | 2.1665487        | 1.7675800     | -3.9783529       |  |
| Η | 2.3835233        | 2.5522851     | -2.4047806       |  |
| Η | 2.2944519        | -1.9086167    | -3.6664033       |  |
| Η | 2.1222364        | -0.4076874    | -4.5913320       |  |
| Η | 0.8098414        | -1.5958333    | -4.5822620       |  |
| С | -0.8163377       | -2.8314362    | 1.9489297        |  |
| Η | -0.2712596       | -3.4576982    | 1.2393939        |  |
| Η | -0.7703151       | 0.8854930     | 2.9487578        |  |
| Η | -2.2125284       | -0.1697919    | 2.9012849        |  |
| Η | -0.8382352       | -0.5793944    | 3.9725379        |  |
| Η | -0.5466572       | -3.1164845    | 2.9691107        |  |
| Η | -1.8934661       | -2.9550026    | 1.8001979        |  |
| Η | -0.0581276       | -2.9367863    | -2.7571746       |  |
| Η | 0.8862587        | -3.0547353    | -1.2415675       |  |
| Η | -0.1575601       | 3.0039948     | -1.0657518       |  |
| Η | 1.0850135        | 2.4475658     | 0.1000591        |  |
| S | 1.7860972        | -0.9964422    | 1.9179828        |  |
| 0 | 2.2672258        | -1.8325045    | 0.8037977        |  |
| 0 | 2.0384835        | -1.5521740    | 3.2580146        |  |
| 0 | 2.0865987        | 0.4374765     | 1.7778424        |  |

# References

- F. Buß, P. Mehlmann, C. Mück-Lichtenfeld, K. Bergander and F. Dielmann, J. Am. Chem. Soc. 2016, 138, 1840.
- [2] P. Mehlmann, C. Mück-Lichtenfeld, T. T. Y. Tan and F. Dielmann, *Chem. Eur. J.*, 2017, 23, 5929.
- [3] S. J. A. El Shaikh, B. C. Smith and M. E. Sobeir, *Angew. Chem. Int. Ed.*, 1970, 9, 308.
- [4] F. Buß, C. Mück-Lichtenfeld, P. Mehlmann and F. Dielmann, *Angew. Chem. Int. Ed.* 2018, 10.1002/anie.201713206.
- [5] S. Poh, R. Hernandez M. Inagaki and P. G. Jessop, Org. Lett. 1999, 20, 7215.
- [6] L. E. Longobardi, V. Wolter and D. W. Stephan, Angew. Chem. Int. Ed., 2015, 54, 809.
- [7] R. S. Grainger, A. Procorpio and J. W. Steed, Org. Lett., 2001, 22, 3565.
- [8] J. Nakayuma, Y. Tajima, P. Xue-hua and Y. Sugihara, J. Am. Chem. Soc., 2007, 23, 7251.
- [9] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. *Appl. Cryst.* 2009, **42**, 339.
- [10] L. Palatinus, G. Chapuis, J. *Appl. Cryst.*, 2007, 40, 786; L. Palatinus, A. van der Lee, *J. Appl. Cryst.*, 2008, 41, 975; L. Palatinus, S. J. Prathapa, S. van Smaalen, *J. Appl. Cryst.*, 2012, 45, 575.
- [11] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- [12] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.
- [13] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [14] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
- [15] F. Weigend; R. Ahlrichs. Phys. Chem. Chem. Phys., 2005, 7, 3297.
- [16] A. Klamt, G. Schürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799.
- [17] S. Grimme, *Chem. Eur. J.*, 2012, **18**, 9955.
- [18] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656.
- [19] TURBOMOLE V7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.