Tannic Acid Mediated Synthesis of Dual-heteroatom Doped Hollow Carbon from Metal-Organic Framework for Efficient Oxygen Reduction Reaction

Mengchen Wu^a, Congling Li^a, Jing Zhao^a, Yun Ling^b and Rui Liu^{a*}

^a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai, 201804, China,

^b Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China

Corresponding author E-mail: ruiliu@tongji.edu.cn

Equation S1: $1/j=1/j_k+1/B\omega^{0.5}$

Equation S2: B=0.62nFC(D)^{2/3}v^{-1/6}

where j is the measured current density, j_k is the kinetic-limiting current density, B is the Levich slope, ω is the rotation speed, n is the overall number of electrons transferred in the ORR, F is Faraday's constant, C is the bulk concentration of O₂ in the electrolyte, D is the diffusion coefficient of O₂, and v is the kinematic viscosity of the electrolyte.

Fig. S1(a)FTIR spectra of ZIF-8, ZIF-8@TA and ZIF-8@TA-BDBA. (b)Schematic illustration on synthetic interaction between boron acid and polyols in TRIS buffer.

Fig.S2 EDS spectrum of NB-HC.

Fig. S3 High-resolution XPS of N1s of (a)N-C and (b) N-HC.

Fig. S4 Cyclic voltammograms for ORR in O_2 or N_2 saturated 0.1 M KOH at a scan rate of 10 mV s⁻¹of (a) N-C, (b) N-HC, and (c)NB-HC electrode.(d)LSV of NB-HC before and after 10000cycles at a scan rate of 100 mV s⁻¹.

*H

*00H

Fig. S5 Calculation model and optimized structures for the stable adsorbed intermediate products on the N/B-codoped nanocarbon.

Fig. S6 The corresponding band structure and partial density states.