Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Lisa Suntrup, Merlin Kleoff, Biprajit Sarkar^\ddagger

‡ Institute for Chemistry and Biochemistry Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin, Germany

Contents

1	NMR Spectra	S2
2	Crystallograhic Details & Molecular Structures	$\mathbf{S6}$
3	Additional Information	$\mathbf{S9}$
4	Synthesis Attempts towards Tris-Triazolium Salts	$\mathbf{S10}$
	4.1 From Iodoform	. S10
	4.2 From Benzotrichloride	. S11
	4.3 From 2,2,2-Tribromoacetic Acid	. S12
	4.4 From Methyl 2,2,2-Tribromoacetate	. S12

1 NMR Spectra

Figure S1. ¹H and ¹³C{¹H} NMR of 4 (measured in $CDCl_3$).

Figure S2. ¹H and ¹³C{¹H} NMR of 8 (measured in $CDCl_3$).

Figure S3. ¹H and ¹³C{¹H} NMR of new triazolium salt 15 (measured in DMSO-d₆).

Figure S4. $^{19}\mathrm{F}$ NMR of 4 (left) and 8 (right) (measured in $\mathrm{CDCl}_3).$

Figure S5. ¹H NMR of single crystals of 4b – crystallization from THF/Et₂O (measured in CDCl₃).

Figure S6. ¹H NMR of green residue, possibly containing **6** (measured in toluene $-d_8$), free triffic acid at 14.92 ppm.

2 Crystallograhic Details & Molecular Structures

Figure S8. ORTEP view of 4b, top and side view. Ellipsoids shown at 50% probabbility level.

Figure S9. ORTEP view of 4c, top and side view. Ellipsoids shown at 50% probabbility level.

Figure S10. Ball-and-stick representation of 15 obtained from X-ray analysis, anion omitted for clarity. Connectivity of the glycol substitutent at the N3-atom confirmed.

	4a	4b	4c	œ
Chemical formula	${ m C}_{30}{ m H}_{22}{ m Ag}_2{ m F}_6{ m N}_6{ m O}_6{ m S}_2$	$ m C_{63}H_{52}Ag_3F_9N_{12}O_{10}S_3$	$C_{60}H_{44}Ag_4F_{12}N_{12}O_{12}S_4$	$\mathrm{C_{15}H_{12}F_{3}N_{3}O_{3}S}$
M_r	956.39	1727.95	1912.79	371.34
Crystal System	triclinic	triclinic	triclinic	monoclinic
Space group	$P\bar{1}$	P1	$P\bar{1}$	$P2_1/c$
a (Å)	6.3470(4)	11.3183(12)	11.6056(11)	5.7679(5)
b (Å)	10.9429(7)	12.0408(12)	11.9727(12)	20.4230(16)
c (Å)	13.4498(9)	13.8230(13)	25.294(2)	13.8248(10)
α (°)	68.090(2)	65.850(4)	99.526(4)	90
β (°)	84.194(2))	89.910(4)	92.150(3)	93.623(3)
(°) Y	79.220(2)	75.722(4)	105.030(3)	90
$V(Å^3)$	850.88(10)	1655.3(3)	3335.6(6))	1625.3(2)
Z	1	1	2	4
Density $(g \cdot cm^{-3})$	1.866	1.733	1.904	1.518
F(000)	472	864	1888	760
Radiation Type	${ m MoK}_{lpha}$	${ m MoK}_{lpha}$	${ m MoK}_{lpha}$	${ m MoK}_{lpha}$
$\mu(\mathrm{mm}^{-1})$	1.359	1.067	1.387	0.252
Crystal size	$0.5 \ge 0.4 \ge 0.2$	$0.2 \ge 0.1 \ge 0.1$	$0.55 \ge 0.4 \ge 0.35$	$0.45 \ge 0.25 \ge 0.09$
Meas. Refl.	17787	39132	91800	15491
Indep. Refl.	4218	21828	23595	4704
Observ. $[I > 2\sigma(I)]$ relf.	3766	18554	19598	3522
R_{int}	0.0589	0.0347	0.0363	0.0547
$\mathrm{R} \; [\mathrm{F}^2 > \sigma(\mathrm{F}^2)], \mathrm{wR}(\mathrm{F}^2), \mathrm{S} \; \Big $	0.0331, 0.0830, 1.071	0.0431, 0.0879, 1.056	0.0378, 0.0847, 1.031	0.0551, 0.1221, 1.026
$\Delta ho_{max}, \Delta ho_{min} ({ m e \AA}^{-3})$	0.553, -1.296	1.427, -0.732	2.166, -1.176	0.376, -0.498

 Table S1.
 Crystallographic data.

3 Additional Information

Figure S11. Simulated and experimental HR-ESI mass spectra of $[10]^+$.

6 in toluene

8 (precipitate) in toluene

Purple solution of **5** and AgOTf in *n*-hexane

```
Figure S12. Pictures of solutions referenced in the manuskript.
```

4 Synthesis Attempts towards Tris-Triazolium Salts

4.1 From Iodoform

1 In a Schlenk tube, iodoform (0.12 mmol, 50.8 mg, 1.0 equiv.), 1 (0.40 mmol, 100 mg, 3.3 equiv.) and silver triflate (0.40 mmol, 103 mg, 3.3 equiv.) were suspended in *n*-hexane/toluene (12 mL, v/v 1:2), capped and heated to 90 °C under exclusion of light overnight. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl₃ was coincident with the one obtained for 4.

2 In a Schlenk tube, iodoform (0.07 mmol, 27.6 mg, 1.0 equiv.) and **1** (0.23 mmol, 50.0 mg, 3.1 equiv.) were suspended in toluene (4 mL), capped and heated to 90 °C under exclusion of light overnight to form a dark reddish-brown solution. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl_3 was coincident with the one obtained for **1**.

3 In a Schlenk tube, iodoform (0.07 mmol, 27.6 mg, 1.0 equiv.), **1** (0.23 mmol, 50.0 mg, 3.1 equiv.), and potassium hexafluorophosphate (0.23 mmol, 50.0 mg, 3.1 equiv.) were suspended in toluene (4 mL), capped and heated to 90 °C under exclusion of light overnight to form a dark reddish-brown solution. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl_3 was coincident with the one obtained for **1**.

4 To evaluate the substitution of only one iodide, iodoform (0.10 mmol, 42.3 mg, 1.0 equiv.), 1 (0.23 mmol, 50.0 mg, 3.3 equiv.), and silver triflate (0.10 mmol, 25.8 mg, 1.0 equiv.) were suspended in toluene (3 mL), capped and heated to 110 °C under exclusion of light overnight to form a dark reddish-brown solution. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl_3 was coincident with the one obtained for 1.

5 In a Schlenk tube, iodoform (0.10 mmol, 39.4 mg, 1.0 equiv.) and 1 (0.30 mmol, 66.3 mg, 3.0 equiv.) were capped and heated to $130 \,^{\circ}$ C and reaction occurred in the melt of the triazole for 4 days. After cooling to room temperature, the mixture was dissolved in acetone, treated with aqueous potassium hexafluorophosphate, and the resulting prescipitate was dissolved in DCM, dried with Na₂SO₄. The solvent was evaporated and the resulting crude NMR in CDCl₃ was coincident with the one obtained for 1.

7 In a Schlenk tube, iodoform (0.15 mmol, 59 mg, 1.0 equiv.), 1 (0.40 mmol, 100 mg, 3.3 equiv.) and silver triflate (0.40 mmol, 103 mg, 3.3 equiv.) were suspended in MeCN (5 mL), capped and heated to 80 °C under exclusion of light overnight. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl_3 was coincident with the one obtained for 1.

8 In a Schlenk tube, iodoform (0.10 mmol, 39.1 mg, 1.0 equiv.), 1 (0.30 mmol, 66.3 mg, 3.0 equiv.) and silver triflate (0.3 mmol, 77.1 mg, 3.0 equiv.) were suspended in THF/Et₂O (6 mL, v/v 1:1), capped and heated to 50 °C under exclusion of light overnight. After cooling to room temperature, the mixture was filtered over celite and the solvent removed. The crude NMR in CDCl₃ was coincident with the one obtained for 4.

4.2 From Benzotrichloride

1 In a Schlenk flask, benzotrichloride (0.10 mmol, 15 µL, 1.0 equiv.) and 1 (0.31 mmol, 68.5 mg, 3.1 equiv.) were suspended in toluene (2 mL) and heated to 80 °C. As soon as all components were dissolved, silver triflate (0.10 mmol, 25.6 mg, 1.0 equiv.) was added and the mixture again heated to 80 °C for 1 hour. This was repeated two more times. After cooling to room temperature, the solvent was evaporated. The crude NMR in $CDCl_3$ was coincident with the one obtained for 4.

2 In a Schlenk tube, benzotrichloride (0.07 mmol, 10 μ L, 1.0 equiv.), silver triflate (0.2 mmol, 159 mg, 3.0 equiv.) and **1** (0.20 mmol, 44.2 mg, 3.0 equiv.) were suspended in hexafluorobenzene (2 mL) and heated to 100 °C. After cooling to room temperature, the solvent was evaporated. The crude NMR in CDCl₃ was coincident with the one obtained for **1**.

3 In a Schlenk flask, benzotrichloride (0.20 mmol, 30 µL, 1.0 equiv.) and silver triflate (0.62 mmol, 159 mg, 3.1 equiv.) were suspended in hexafluorobenzene (3 mL) and heated to 80 °C. The solution turned a brownish color under formation of a precipitate. The solution was decanted and added to a new flask containing **1** (0.62 mmol, 137 mg, 3.1 equiv.) and the mixture again heated to 80 °C overnight. After cooling to room temperature, the solvent was evaporated. The crude NMR in CDCl_3 was coincident with the one obtained for **8**.

4 In a Schlenk flask, benzotrichloride (0.20 mmol, 30 μ L, 1.0 equiv.) and silver triflate (0.62 mmol, 159 mg, 3.1 equiv.) were suspended in *n*-hexane (2 mL) under instant color change to deep purple. This solution was transferred to a Schlenk flask containing **1** (0.62 mmol, 137 mg, 3.1 equiv.) in hexafluorobenzene (5 mL). The formation of a colorless suspension could be observed within seconds. This mixture was heated to 80 °C for 3 hours before the solvent was removed. The crude NMR in CDCl₃ was coincident with the one obtained for **1**.

5 In a Schlenk tube, benzotrichloride (0.35 mmol, 50 µL, 1.0 equiv.), 1 (1.20 mmol, 265 mg, 3.5 equiv.) and TMSOTf (1.40 mmol, 0.25 mL, 4.0 equiv.) were suspended in toluene (3 mL) and heated to 80 °C overnight. After cooling to room temperature, the mixture was poured into Et_2O and the beige precipitate was collected by filtration. The crude NMR in $CDCl_3$ was coincident with the one obtained for 8.

6 In a Schlenk tube, benzotrichloride (0.35 mmol, 50 μ L, 1.0 equiv.), **1** (1.20 mmol, 265 mg, 3.5 equiv.) were suspended in THF (8 mL) and heated to 80 °C overnight. After cooling to room temperature, TMSOTf (1.40 mmol, 0.25 mL, 4.0 equiv.) was added, heated again for 2 hours

and the mixture then was poured into Et_2O and the beige precipitate was collected by filtration. The crude NMR in CDCl_3 was coincident with the one obtained for **8**.

7 In a Schlenk tube, benzotrichloride (0.35 mmol, 50 μ L, 1.0 equiv.) and 1 (1.20 mmol, 265 mg, 3.5 equiv.) were heated to 130 °C for 2 days. After cooling to room temperature, the crude NMR in CDCl₃ was coincident with the one obtained for 1.

8 In a Schlenk tube, benzotrichloride (0.35 mmol, 50 μ L, 1.0 equiv.) and 1 (1.20 mmol, 265 mg, 3.0 equiv.) were dissolved in 1,4-doxane (3 mL) and heated to 120 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl₃ was coincident with the one obtained for 1.

9 In a Schlenk tube, benzotrichloride (0.35 mmol, 50 μ L, 1.0 equiv.) and **1** (1.20 mmol, 265 mg, 3.5 equiv.) were dissolved in THF and heated to 80 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl₃ was coincident with the one obtained for **1**.

4.3 From 2,2,2-Tribromoacetic Acid

1 In a Schlenk tube, 2,2,2-tribromoacetic acid (0.1 mmol, 30.0 mg, 1.0 equiv.) and 1 (0.3 mmol, 66.0 mg, 3.5 equiv.) were dissolved in toluene (1.5 mL) and heated to 110 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for 1.

2 In a Schlenk tube, 2,2,2-tribromoacetic acid (0.1 mmol, 30.0 mg, 1.0 equiv.) and **1** (0.3 mmol, 66.0 mg, 3.5 equiv.) were dissolved in THF (1.5 mL) and heated to 80 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for **1**.

3 In a Schlenk tube, 2,2,2-tribromoacetic acid (0.1 mmol, 30.0 mg, 1.0 equiv.) and **1** (0.3 mmol, 66.0 mg, 3.5 equiv.) were dissolved in 1,4-dioxane (1.5 mL) and heated to 80 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for **1**.

4.4 From Methyl 2,2,2-Tribromoacetate

1 In a Schlenk tube, metyhl 2,2,2-tribromoacetate (1.0 mmol, 310 mg, 1.0 equiv.) and 1 (4.0 mmol, 888 mg, 4.0 equiv.) were dissolved in toluene (5 mL) and heated to 110 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for 1.

2 In a Schlenk tube, metyhl 2,2,2-tribromoacetate (1.0 mmol, 310 mg, 1.0 equiv.) and **1** (4.0 mmol, 888 mg, 4.0 equiv.) were dissolved in THF (5 mL) and heated to 110 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for **1**.

3 In a Schlenk tube, metyhl 2,2,2-tribromoacetate (1.0 mmol, 310 mg, 1.0 equiv.) and **1** (4.0 mmol, 888 mg, 4.0 equiv.) were dissolved in 1,4-dioxane (5 mL) and heated to 110 °C for 3 days. After cooling to room temperature, the crude NMR in CDCl_3 was coincident with the one obtained for **1**.