Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Belonging to the manuscript

Playing with Pearson's concept: Orthogonally functionalized 1,4-diaza-1,3-butadienes leading to heterobinuclear complexes

by

J. P. Neu, P. Di Martino-Fumo, B. Oelkers, Y. Sun, A. Neuba, M. Gerhards, and W. R. Thiel*

Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 52-54 67663 Kaiserslautern, Germany

Email: thiel@chemie.uni-kl.de

1. Spectroscopic data

1,4-Bis(2-diphenylphosphorylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (3a)

¹H NMR spectrum (aromatic region)

1H 294.9

f1 (ppm)

¹³C{¹H} NMR spectrum

270 250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 f1 (ppm)

¹³C{¹H} NMR spectrum (aromatic region)

13C 295.0

HMQC

³¹P{¹H} NMR spectrum

31P 295.1

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -15 -25 -35 f1 (ppm)

N,*N*'-1,2-Acenaphthylenediylidene(2-diphenylphosphorylphenyl)amine (3b)

¹H NMR spectrum

1H

³¹P{¹H} NMR spectrum

31P

IR spectrum

Bis[(1,4-bis(2-diphenylphosphorylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene- $\kappa^2 N, \kappa^2 O$)chloridozinc] hexachloridodizincate (4a)

¹H NMR spectrum

¹H NMR spectrum (aromatic region)

1H 238K

¹³C{¹H} NMR spectrum (aromatic region)

13C 238K

HMBC

HMQC

³¹P{¹H} NMR spectrum

31P 238K

Bis[(N,N'-1,2-acenaphthylenediylidene(2-diphenylphosphoryl-phenyl)amine- $\kappa^2 N, \kappa^2 O$)chloridozinc] hexachloridodizincate (4b)

¹H NMR spectrum (aromatic region)

1H 295K

HH-COSY

¹³C{¹H} NMR spectrum

100 90 f1 (ppm)

¹³C{¹H} NMR spectrum (aromatic region)

13C 295K

HMBC

132.6(C1 132.6(C1

135.1(C17) 135.3(C12)

136.3(C10)_

#

8.2

H

8.1

8.0

7.9

133.4(C15 133.4(C15 134.1(C2)

II.

7.7

7.6 7.5 f2 (ppm)

11,

7.8

7.0

#141

7.3

7.2

7.1

7.4

-133

-134

-135

-136

-137

6.9

³¹P{¹H} NMR spectrum

(1,4-Bis(2-diphenylphosphorylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene- $\kappa^2 O$)dichlo-ridozinc (5a)

¹H NMR spectrum

1H 295.0

¹H NMR spectrum (aromatic region)

1H 295.0

HH-COSY (aromatic region)

¹³C{¹H} NMR spectrum

HMBC (aromatic region)

0 f1 (ppm)

20

-30

-60

-90

-120

-160

170

140

110

80

60

40

31P 295K

(1,4-Bis(2-diphenylphosphorylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene- $\kappa^2 N$)(di-chloridopalladium) (6a)

¹H NMR spectrum

¹H NMR spectrum (aromatic region)

1H 295.0

³¹P{¹H} NMR spectrum

[*N*,*N*'-1,2-Acenaphthylenediylidene(2-diphenylphosphorylphenyl)amine- $\kappa^2 N$](dichlo-ridopalladium) (6b)

¹H NMR spectrum (aromatic region)

1H 323K

HH-COSY

135.0	134.0	133.0	132.0	131.0	130.0 f1 (ppm)	129.0	128.0	127.0	126.0	125.0

HMBC

HMBC (aromatic region)

³¹P{¹H} NMR spectrum

31P 323K

$(1,4-Bis(2-diphenylphosphorylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene-1\kappa^2N,2\kappa^2O)-$ (dichloridopalladium)(dichloridozinc) (7a)

¹H NMR spectrum

1H 294.9

HH-COSY (aromatic region)

HMQC (aromatic region)

0 f1 (ppm) -30

-60

-90

-120

-160

20

140

110

80

60

40

170

[N,N'-1,2-Acenaphthylenediylidene(2-diphenylphosphoryl-phenyl)amine-1 $\kappa^2N,2\kappa^2O$](dichloridopalladium)(dichloridozinc) (7b)

¹H NMR spectrum

1H 295.0

¹H NMR spectrum (aromatic region)

1H 295.0

HH-COSY (aromatic region)

¹³C{¹H} NMR spectrum (aromatic region)

13C 295.0

³¹P{¹H} NMR spectrum

31P 295.0

c:\pel_data\spectra\akthiel\jens n\jpn348.asc

yComparison of the IR data (3a, 4a, 5a, 6a, 7a)

Comparison of the IR data (3b, 4b, 6b, 7b)

2. Electrochemistry

Cyclic voltammograms of 3a (A), 6a (B) and 5a (C) in dichloromethane at room temperature with a scan rate of 100 mV/s.

Cyclic voltammograms of **7a** (D), **6b** (E) in in dichloromethane at room temperature with a scan rate of 100 mV/s.

3. Quantum chemical calculations (optimized structures)

3.1 woelfling calculations on the trans-cis isomerization of compound 5a

difference angle / °		∆E / kJ·mol⁻¹				
147.2		19.4304223				
14	1.1		20.9961235			
135.0			22 2458615			
10	0.0		25.2400010			
12	9.0		25.2120705			
12	3.6		28.5286830			
11	7.7		31.8525660			
11	0.7		35.7356805			
10	3.5		41.3096170			
C	58		49 3121410			
0	0.0		40.6045755			
C	9.7		49.0243733			
8	4.6		44.5468585			
7	9.0		40.2436640			
7	2.2		32.1387455			
6	4.8		22.2668655			
5	6 9		13 5239505			
4	0.0		10.0200000			
4	0.0		10.07 14100			
3	8.2		5.6185700			
2	6.0		1.9717505			
1	3.2		0.6800045			
	0.0		0.0000000			
	1	dist	rms(g)	rms(g^S)	energy	rms(step)
structure	1	0.000	0.361E-02	0.000E+00	-51/9.432/03	0.000E+00
structure	ے ح	2.237	0.844E-04 0.818E-04	0.044E-04 0.786F-04	-5179.430200	0.794E-03
structure	4	2.257	0.949E-04	0.900E - 04	-5179.434625	0.103E-02
structure	5	2.257	0.112E-03	0.106E-03	-5179.433494	0.123E-02
structure	6	2.257	0.122E-03	0.115E-03	-5179.432159	0.137E-02
structure	7	2.257	0.128E-03	0.118E-03	-5179.430623	0.145E-02
structure	8	2.257	0.159E-03	0.134E-03	-5179.428637	0.160E-02
structure	9	2.257	0.160E-03	0.125E-03	-5179.425542	0.150E-02
structure	10	2.257	0.192E-03	0.173E-03	-5179.425291	0.193E-02
structure	11	2.257	0.162E-03	0.138E-03	-5179.428398	0.157E-02
structure	12	2.257	0.140E-03	0.108E-03	-5179.430681	0.112E-02
structure	13	2.257	0.178E-03	0.124E-03	-5179.434437	0.145E-02
structure	14	2.257	0.178E-03	0.121E-03	-5179.438946	0.144E-02
structure	15	2.257	0.183E-03	0.158E-03	-5179.442655	0.170E-02
structure	16	2.257	0.143E-03	0.129E-03	-5179.444244	0.139E-02
structure	17	2.257	0.121E-03	0.885E-04	-5179.446795	0.999E-03
structure	18	2.257	0.838E-04	0.701E-04	-5179.448825	0.773E-03
structure	19	2.257	0.599E-04	0.594E-04	-5179.449863	0.670E-03
structure	20	2.257	0.365E-02	0.000E+00	-5179.446490	0.000E+00

3.2 DFT freq calculation of the optimized geometry of exo-7a

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	(Angstroms) Y Z	
1	6	0	0.968390	-1.016699	-2.402921	
2	6	0	-0.499277	-1.237791	-2.327769	
3	6	0	1.521626	-0.145397	-3.475313	
4	1	0	2.603525	-0.078666	-3.421163	
5	1	0	1.236687	-0.537745	-4.454762	
6	1	0	1.096341	0.857830	-3.387720	
7	6	0	-1.380600	-0.638232	-3.367481	
8	1	0	-2.424074	-0.891291	-3.207965	
9	1	0	-1.079280	-0.983354	-4.359359	
10	1	0	-1.266743	0.449822	-3.355310	
11	6	0	3.074330	-1.425451	-1.397407	
12	6	0	3.892416	-2.408300	-1.940620	
13	1	0	3.432065	-3.272342	-2.398553	
14	6	0	5.271918	-2.288595	-1.864957	
15	1	0	5.899556	-3.060173	-2.291920	
16	6	0	5.840132	-1.191407	-1.230544	
17	1	0	6.915869	-1.092292	-1.165576	
18	6	0	5.023204	-0.221444	-0.666391	
19	1	0	5.473946	0.626743	-0.170130	
20	6	0	3.629579	-0.318212	-0.732290	
21	6	0	2.042311	0.259118	1.641774	
22	6	0	1.074429	0.972513	2.360350	
23	1	0	0.660101	1.894306	1.970031	
24	6	0	0.637036	0.485033	3.580582	
25	1	0	-0.114621	1.031733	4.130963	
26	6	0	1.139404	-0.714242	4.080514	
27	1	0	0.768408	-1.102482	5.021060	
28	6	0	2.097211	-1.422177	3.368093	
29	1	0	2.465651	-2.372988	3.728672	
30	6	0	2.561660	-0.929360	2.154553	
31	1	0	3.288675	-1.502053	1.598981	
32	6	0	3.632300	2.368066	0.453916	
33	6	0	4.429050	2.422047	1.600077	
34	1	0	4.432367	1.593999	2.298312	
35	6	0	5.200267	3.548501	1.854544	
36	1	0	5.813427	3.591586	2.745876	
37	6	0	5.169673	4.626195	0.973820	
38	1	0	5.763581	5.508120	1.179812	
39	6	0	4.365755	4.580519	-0.160439	
40	1	0	4.326694	5.426411	-0.834821	
41	6	0	3.597354	3.453652	-0.423901	
42	1	0	2.951711	3.420962	-1.292118	
43	6	0	-2.285849	-2.219097	-1.119058	
44	6	0	-2.728833	-3.479684	-1.512814	
45	1	0	-2.012960	-4.169190	-1.938342	
46	6	0	-4.049208	-3.849836	-1.327392	
47	1	0	-4.378278	-4.833127	-1.637731	
48	- 6	0 0	-4.939406	-2.965780	-0.726931	
49	1	0 0	-5.972308	-3.248151	-0.570524	
50	- 6	Õ	-4.495566	-1.718717	-0.321195	
51	1	õ	-5.196279	-1.038115	0.142780	
52	- 6	Ũ	-3.166378	-1.317239	-0.506632	

Standard orientation:

53	6	0	-4.003823	1.474394	-0.384823	
54	6	0	-3.829201	2.203194	-1.564097	
55	1	0	-2.915267	2.111124	-2.136075	
56	6	0	-4.814180	3.086811	-1.987038	
57	1	0	-4.660003	3.660670	-2.891777	
58	6	0	-5.978105	3.243412	-1.242918	
59	1	0	-6.742634	3.936348	-1.571948	
60	6	0	-6.154717	2.523162	-0.064826	
61	1	0	-7.053020	2.656212	0.524919	
62	6	0	-5.170292	1.644548	0.367186	
63	1	0	-5.301215	1.112069	1.300539	
64	6	0	-2.684420	0.254073	1.891769	
65	6	0	-2.594005	-0.966935	2.563775	
66	1	0	-2.480905	-1.894673	2.018031	
67	6	0	-2.624798	-0.992703	3.953287	
68	1	0	-2.545274	-1.941522	4.468044	
69	6	0	-2.752653	0.190624	4.670938	
70	1	0	-2.790091	0.165524	5.753371	
71	6	0	-2.810698	1.412159	4.003047	
72	1	0	-2.881247	2.337082	4.561537	
73	6	0	-2.766042	1.449904	2.617131	
74	1	0	-2.780937	2.401686	2.101320	
75	7	0	1.662397	-1.610228	-1.490703	
76	7	0	-0.901582	-1.933753	-1.320253	
77	8	0	1.475151	1.369176	-0.842715	
78	8	0	-1.376975	0.755237	-0.527204	
79	15	0	2.592996	0.941689	0.077413	
80	15	0	-2.683389	0.334065	0.091888	
81	30	0	-0.254552	2.415337	-0.898017	
82	17	0	-0.580455	3.844209	0.777782	
83	17	0	-0.503321	2.918508	-3.080268	
84	46	0	0.590170	-2.794746	-0.185528	
85	17	0	2.417783	-3.916845	0.655382	
86	17	0	-0.830470	-3.926659	1.222826	
Recovered e:	nergy= -623 029 -0	5.2491/834 648182394393	alpole=	-0.35290763	5858	
Low frequen	025 0. cies	-0 0160 -0	,) 0135 -0 011	3 -0 0069	0 0105	0 0165
Low frequen	cies	7 8905 23	8 6793 25 853	75	0.0105	0.0105
Zero-point	correction=	1.0300 20	20.001	0 645389 (H	artree/Part	icle)
Thermal co	rrection to	Energy=		0 696151	arcree, rare.	1010/
Thermal co	rrection to	Enthalpy=		0.697095		
Thermal co	rrection to	Gibbs Free	Energy=			
Sum of ele	ctronic and	zero-point	-6234 6	0.3789		
Sum of ele	ctronic and	thermal Ene	-6234 5	53028		
Sum of ele	ctronic and	thermal Ent	thalpies=	-6234 5	52083	
Sum of ele	ctronic and	thermal Fre	e Energies=	-6234.6	91863	

3.3 DFT	freq calcula	ation of the optimiz	zed geometr	y of endo- 7a
		Standar	- d orientat	ion:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	6	0	0.741238	-0.948740	-2.405059	
2	6	0	-0.741083	-0.948551	-2.405042	
3	6	0	1.489202	-0.101638	-3.381568	
4	1	0	2.558157	-0.288529	-3.336925	
5	1	0	1.141698	-0.271952	-4.401500	
6	1	0	1.316783	0.951477	-3.142643	
7	6	0	-1.488736	-0.100920	-3.381323	
8	1	0	-2.557777	-0.287365	-3.336730	
9	1	0	-1.141295	-0.271044	-4.401284	
10	1	0	-1.315883	0.952046	-3.142027	
11	6	0	2.697142	-1.896567	-1.410983	
12	6	0	3.193511	-3.098033	-1.909031	
13	1	0	2.506042	-3.790840	-2.375337	
14	6	0	4.533638	-3.416783	-1.762231	
15	1	0	4.905618	-4.355895	-2.151276	
16	6	0	5.383323	-2.553452	-1.079340	
17	1	0	6.422996	-2.812970	-0.928321	
18	6	0	4.883138	-1.368881	-0.562844	
19	1	0	5.535012	-0.718050	0.006510	
20	6	0	3.541914	-1.009490	-0.734746	
21	6	0	3.761145	0.756990	1.539863	
22	6	0	4.716613	1.741976	1.801240	
23	1	0	5.025250	2.425794	1.021003	
24	6	0	5.260880	1.850623	3.074674	
25	l	0	5.99/0/5	2.616974	3.282273	
26	6	0	4.8469/3	0.984858	4.082614	
27		0	5.265261	1.0/85/3	5.077423	
28	6	0	3.89UUI8 2.551170	0.008525	3.8229/1	
29		0	3.551170	-0.651363	4.610666	
30	0	0	3.344364	-0.114203	2.000540	
31 22		0	2.590054	-0.866431	2.339834	
J∠ 22	0	0	3.301330	1.0/2002	-1.170002	
22	0	0	2.043042	3.000810	-1.203132	
34 25	1 G	0	1.957100	3.170823	-0.588417	
35	1	0	2.24033J 2.674211	5 020460	-2.029734	
30	1	0	/ 380519	3 967204	-2 826582	
38	1	0	4.500519	1 780650	-3 470637	
20 29	1 6	0	5 113849	2 784697	-2 797971	
40	1	0	5 993452	2 674348	-3 420018	
40	6	0	4 717576	1 739532	-1 972247	
42	1	0	5 289517	0 821286	-1 966783	
43	- 6	0	-2 697276	-1 896232	-1 411461	
44	6	0	-3 193766	-3 097608	-1 909631	
45	1	0	-2506307	-3 790541	-2 375761	
46	6	Õ	-4.533998	-3.416075	-1.763214	
47	1	0 0	-4.906084	-4.355096	-2,152375	
4 8	- -	0 0	-5.383660	-2.552598	-1,080474	
49	1	0	-6.423421	-2.811909	-0.929709	
ェン 50	6	0	-4 883349	-1.368169	-0.563794	
51	1	0 0	-5 535195	-0.717316	0,005562	
52	÷ 6	0 0	-3.542020	-1.008996	-0.735419	
53	6	Õ	-3 581452	1 873626	-1 169635	

54	6	0	-2.842371	3.060796	-1.203711	
55	1	0	-1.955083	3.169924	-0.589999	
56	6	0	-3.247035	4.102859	-2.029810	
57	1	0	-2.672023	5.020300	-2.046462	
58	6	0	-4.380350	3.968759	-2.825218	
59	1	0	-4.691497	4.782527	-3.468871	
60	6	0	-5.114844	2.786993	-2.795707	
61	1	0	-5.995322	2.677534	-3.416671	
62	6	0	-4.718606	1.741423	-1.970489	
63	1	0	-5.291485	0.823761	-1.964334	
64	6	0	-3.761091	0.756594	1.539760	
65	6	0	-3.344077	-0.114678	2.553186	
66	1	0	-2.589199	-0.866498	2.359295	
67	6	0	-3.889621	0.007351	3.822640	
68	1	0	-3.550430	-0.652619	4.610117	
69	6	0	-4.847121	0.983070	4.082566	
70	1	0	-5.265486	1.076252	5.077392	
71	6	0	-5.261485	1.848906	3.074870	
72	1	0	-5.998121	2.614778	3.282677	
73	6	0	-4.717115	1.740966	1.801419	
74	1	0	-5.026165	2.424829	1.021387	
75	7	0	1.288913	-1.699146	-1.513418	
76	7	0	-1.288942	-1.699150	-1.513662	
77	8	0	1.470390	0.629789	0.008652	
78	8	0	-1.470366	0.629858	0.008342	
79	15	0	2.971990	0.575486	-0.060381	
80	15	0	-2.971960	0.575737	-0.060587	
81	30	0	0.000117	1.299182	1.263805	
82	17	0	0.000163	0.245912	3.202804	
83	17	0	0.000496	3.546980	1.000325	
84	46	0	-0.000112	-2.507674	-0.128215	
85	17	0	1.651941	-3.282510	1.258619	
86	17	0	-1.652447	-3.283061	1.258018	
Recovered	energy= -623	35.22641058	dipole=	0.00024223	32818	
Low freque	ncies	-0 0204 -0	,) 0179 _0 00/	15 0 0066	0 0100	0 0175
Low freque	ncies	11 3921 15	5 3531 19 332	14 0.0000	0.0100	0.01/5
Zero-point	correction	=	1.0001 10.004	0 643630 (F	lartree/Part	icle)
Thermal co	orrection to	Energy=		0 695273		1010/
Thermal co	orrection to	Enthalpy=		0 696217		
Thermal co	orrection to	o Gibbs Free	Energy=	0.551431		
Sum of ele	ectronic and	d zero-point	Energies=	-62.34	582781	
Sum of ele	ectronic and	d thermal Ene	ergies=	-62.34	531138	
Sum of ele	ectronic and	d thermal Ent	thalpies=	-6234 5	530194	
Sum of ele	ectronic and	d thermal Fre	e Energies=	-6234 6	574980	
Jun Or CI			C DIICT 9100	0204.0	, 1900	