Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information (ESI)

A highly selective conversion of toxic nitrobenzene to nontoxic aminobenzene by

Cu₂O/Bi/Bi₂MoO₆

Yuhang Wu, Meiting Song, Qijun Wang, Ting Wang and Xiaojing

Wang*

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia,010021, P. R. China Corresponding Author. Tel: 0471-4994406; 86-13948315232; *E-mail: wang xiao jing@hotmail.com*

Fig.S1 SEM images of (a) pure Bi_2MoO_6 (BM), (b) CB-1, (c) CB-2, (d) CB-3, (e) CB-4 and (f) CB-5. And the red selected area represents Cu_2O .

ESI: Fig. S2

Fig. S2 The energy-dispersive X-ray spectrum and map scanning of CB-2 nanocomposite from SEM.

Fig. S3 The scanning transmission electron microscope (STEM) (a), Energy-dispersive X-ray microanalysis (EDX) (b), and line scanning (c-f) along the red arrow direction in Figure 3a for the

separated elements.

Fig. S4 UV-vis absorption spectra for the catalytic reduction of 4-NP over (a) $NaBH_4$ and 4-NP alone, (b) pure Cu_2O .

ESI: Fig. S5

Fig. S5 The conversion efficiency of 4-NP to 4-AP when catalyzed by pure Bi₂MoO₆(A), CB-1(B),

CB-2(C), CB-3(D), CB-4(E) and CB-5(F) for the different runs over a reactive time of 2 min.

ESI: Fig. S6

Fig. S6 The profile of the conversion efficiency vs. time during the catalytic reduction of 4-chloronitrobenzene, 4-nitrobenzoic acid, p-nitrotoluene, nitrobenzene and 4-nitrophenol over CB-2.

Fig. S7 Nitrogen adsorption-desorption isotherms of BM (a) and CB-2 (b).

Fig. S8 The XPS spectra of Cu2p for a fresh CB-2 (A) sample; XPS spectra of Cu2p for a used CB-2 (B) sample.

catalyst	kapp(×10 ⁻² s ⁻¹)	kapp (min ⁻¹)	K(g ⁻¹ s ⁻¹)	Activity factor K(g ⁻¹ min ⁻ ¹)
BM	3.655	2.193	73.1	4386
CB-1	5.785	3.471	115.7	6942
CB-2	8.378	5.0268	167.56	10053.6
CB-3	2.911	1.7466	58.22	3493.2
СВ-4	1.922	1.1532	38.44	2306.4
CB-5	1.437	0.8622	28.74	1724.4

ESI: Table S1 Reaction rate constant of BM, CB-1, CB-2, CB-3, CB-4, CB-5 and Cu_2O .

Number	Catalysts	Activity factor K(g ⁻¹ min ⁻¹)	Literature
1	BM	4386	This work
2	CB-2	10053.6	This work
3	Ag supported halloysite nanotubes	5.22	Reference[1]
4	Bismuth Nanoparticles	1650.6	Reference[2]
5	Bi-Fe ₃ O ₄ @RGO	1482.6	Reference[3]
6	Au-loaded Na ₂ Ta ₂ O ₆ Under solar light irradiation	2673.7	Reference[4]
7	Cu ₂ O–Cu–CuO nanocomposite	1248	Reference[5]
8	Cu NPs	4384.8	Reference[6]
9	9.6nm Ag	88.9	Reference[7]
10	Ag doped carbon spheres	101.4	Reference[1]
11	Ag/Fe oxide composite	105.5	Reference[8]
12	11.3nm Ag	116.7	Reference[7]
13	Fe ₃ O ₄ @SiO ₂ -Au@SiO ₂ microspheres	116.7	Reference[9]
14	Polymer-supported Au nanoparticles	135.6	Reference[10]
15	AuNPs/NiSiO	975	Reference[11]
16	Spongy Au nanoparticles	21	Reference[12]
17	Ag/TiO ₂ nanoparticles	389.7	Reference[13]
18	Au ₁₈₀ (SC ₆ H ₁₃) ₁₀₀	3000	Reference[14]
19	Porous Cu-Au structures	1638	Reference[15]
20	Au ₂₅ (SC ₈ H ₉) ₁₈	5100	Reference[14]

ESI: Table S2 Activity factor K of BM, CB-2 together with the catalysts reported in literatures.

Element _	Atomic % BM			Atomic % CB-2		
	Fresh	Used	Theoretical value	Fresh	Used	Theoretical value
Bi	22.8	57.42	22.22	22.84	22.88	21.15
0	70.76	6.39	66.67	65.6	65.34	65.05
Мо	6.43	36.19	11.11	8.38	8.14	10.57
Cu				3.18	3.64	3.33

ESI: Table S3 The atomic percentages of all elements in BM and CB-2 catalysts (both the fresh and the used samples) from the energy-dispersive X-ray spectra of SEM.

References

- [1] P. Liu and M. Zhao, Appl. Surf. Sci., 2009, 255, 3989.
- [2] X. Fengling, X. Xiaoyang, L. Xichuan, Z. Lei, Z. Li, Q. Haixia, W. Wei, L. Yu and G. Jianping, *Ind. Eng. Chem. Res.*, 2014, **53**, 10576–10582.
- [3] W. Xuefang, X. Fengling, L. Xichuan, X. Xiaoyang, W. Huan, Y. Nian and G. Jianping, J. Nanopart. Res., 2015, 17:436.
- [4] L. Xiaoqing, S. Yiguo, L. Junyu, C. Zhanli, W. Xiaojing, *J. Alloys Compd.*, 2017, 695, 60-69.
- [5] A.K. Sasmal, S. Dutta and T. Pal, *Dalton Trans.*, 2016, 45, 3139.
- [6] A.D. Verma, R.K. Mandal and I. Sinha, Catal. Lett., 2015, 145,1885
- [7] Y. Y. Liu, Y. X. Zhang, H. L. Ding, S. C. Xu, M. Li, F. Y. Kong, Y. Y. Luo and G. H. Li, *J. Mater. Chem. A*, 2013, 1,3362.
- [8] J. R. Chiou, B. H. Lai, K. C. Hsu and D. H. Chen, J. Hazardous Mater., 2013, 394, 248-249.
- [9] Y. H. Deng, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466.
- [10] K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. A: Chem., 2009, 298, 7-11.
- [11] R. Jin, S. Sun, Y. Yang, Y. Xing, D. Yu, X. Yu and S. song, *Dalton Trans.*, 2013, 42, 7888.
- [12] H. MdRashid, R. R. Bhattacharjee, A. Kotal and T. K. Mandal, *Langmuir*, 2006, 22, 7141.
- [13] S. P. Deshmukh, R. K. Dhokale, H. M. Yadav, S. N. Achary and S. D. Delekar, *Appl. Surf. Sci.*, 2013, 273, 676.
- [14] A. Shivhare, S. J. Ambrose, H. Zhang, R. W. Purves and R. W. J. Scott, *Chem. Commun.*, 2013, **49**, 276.
- [15] I. Najdovski, P. R. Selvakannan, S. K. Bhargava and A. P. OMullane, *Nanoscale*, 2012, 4, 6298.