Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary Material (ESI) for RSC Journals. The Royal Society of Chemistry 2018

SUPPORTING INFORMATION FOR:

Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters

J. Martínez,^a M. Martínez de Sarasa Buchaca,^a F. de la Cruz-Martínez,^a C. Alonso-Moreno,^b L. F. Sánchez-Barba,^c J. Fernandez-Baeza,^a A. M. Rodríguez,^a A. Rodríguez-Diéguez,^d J. A. Castro-Osma,^{*b} A. Otero^{*a} and A. Lara-Sánchez^{a*}

^aUniversidad de Castilla-La Mancha. Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, 13071-Ciudad Real, Spain. E-mail: <u>Agustin.Lara@uclm.es, Antonio.Otero@uclm.es</u>

^bUniversidad de Castilla-La Mancha. Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain. E-mail: <u>JoseAntonio.Castro@uclm.es</u>

^cUniversidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933 Madrid, Spain.

^dDpto. de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. de Fuentenueva s/n, 18071-Granada Spain.

Table of Contents

Figure S1. ¹H NMR Spectrum for complex 1 S1 Figure S2. Fluxional behaviour as a result of a slow exchange process between the coordinated and non-coordinated pyrazole rings for complexes 1-4 S1 **Figure S3**. VT-NMR study in the region from 2.4 to 0.0 ppm for compound **2** in toluene- d_8 S2 **Figure S4**. VT-NMR study in the region from 8.0 to 5.1 ppm for compound **6** in toluene- d_8 S3 Table S1. Crystal data and structure refinement for compounds 1 and 5 S4 Table S2. Bond distances (Å) and angles (°) for compound 1 and 5 S5 **Figure S5**. GPC profile of PCL with M_n = 18797 Da and M_w/M_n = 1.06 (entry 6 in Table 1) S6 **Figure S6**. NMR spectra of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex 6 **S7 Figure S7**. TGA analysis of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex 6 **S**8 **Figure S8**. DSC analysis of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex 6 **S**8 **Figure S9**. GPC profile of PLA with M_n = 25869 Da and M_w/M_n = 1.14 (entry 2 in Table 2) S9 **Figure S10**. NMR spectra of PLA with M_n = 25869 Da and M_w/M_n = 1.14 prepared with S10 complex 6 **Figure S11**. TGA analysis of PLA with M_n = 25869 Da and M_w/M_n = 1.14 prepared with complex 6 S11 **Figure S12**. DSC analysis of PLA with $M_{\rm p}$ = 25869 Da and $M_{\rm w}/M_{\rm p}$ = 1.14 prepared with complex 6 S11

Figure S13. GPC profile of copolymer of cyclohexene oxide and phthalic anhydride with M_n = 14744 Da and M_w/M_n = 1.04 (entry 4 in Table 4)

S12

Figure S14. NMR spectra for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**

S13

Figure S15. TGA analysis for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**

Figure S16. DSC analysis for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**

S14

Figure S1. ¹H-NMR Spectrum for complex 1 in C₆D₆.

Figure S2. Fluxional behaviour as a result of a slow exchange process between the coordinated and non-coordinated pyrazole rings for complexes **1**-**4**.

Figure S3. VT-NMR study in the region from 2.4 to 0.0 ppm for compound **2** in toluene- d_8 . The VT NMR analysis showed that the resonances of the pyrazole rings and the alkyl groups broaden and become resolved indicating the presence of two diastereoisomers at -90 °C. Therefore, there is an exchange process between the coordinated and the non-coordinated pyrazole rings, involving an interconversion from one diastereoisomer to the other. It is worth mentioning that the methine carbon bridging the two pyrazole rings is a stereocentre due to the coordination mode of heteroscorpionate ligand.

Figure S4. VT-NMR study in the region from 8.0 to 5.1 ppm for compound **6** in toluene- d_8 . The VT NMR analysis showed that the resonances of the pyrazole rings become resolved indicating the presence of onediastereoisomers at -90 °C. Therefore, there is not an exchange process between the coordinated and the non-coordinated pyrazole rings.

	1	5				
Empirical formula	C ₁₈ H ₃₁ Al N ₄ O	C ₄₉ H ₆₆ Al ₂ N ₈ O ₂				
Formula weight	346.45	853.05				
Temperature (K)	230(2)	100(2)				
Wavelength (Å)	0.71073	0.71073				
Crystal system	Triclinic	Triclinic				
Space group	P ī	P ī				
a(Å)	8.913(5)	10.3817(6)				
b(Å)	9.995(6)	10.7672(7)				
c(Å)	12.184(8)	10.8726(7)				
α(°)	93.893(13)	102.164(2)				
β(°)	97.531(13)	95.020(2)				
γ(°)	101.566(16)	91.554(2)				
Volume(Å ³)	1049.2(11)	1182.22(13)				
Z	2	1				
Density (calculated) (g/cm ³)	1.097	1.198				
Absorption coefficient (mm ⁻¹)	0.108	0.109				
F(000)	376	458				
Crystal size (mm ³)	0.23 x 0.17 x 0.12	0.20 x 0.20 x 0.14				
Index ranges	$-11 \le h \le 9$	$-12 \le h \le 12$				
	$-7 \le k \le 12$	$-13 \le k \le 13$				
	$-15 \le l \le 15$	$-13 \le l \le 13$				
Reflections collected	6894	15102				
Independent reflections	4512 [R(int) = 0.0227]	4644 [R(int) = 0.0493]				
Data / restraints / parameters	4512 / 0 / 226	4644 / 0 / 315				
Goodness-of-fit on F ²	1.063	1.038				
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0559, wR2 = 0.1363	R1 = 0.0418, wR2 = 0.0936				
Largest diff. peak / hole, e.Å- ³	0.208 / -0.175	0.349 / -0.214				
$a R = \sum F_{0} - F_{c} / \sum F_{0} . b wR = \sum \sum w(F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2})^{2} / \sum c GOF = \sum w((F_{0}^{2} - F_{c}^{2})^{2}) / (n-p) / \sum w(F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2} -$						

Table S1. Crystal data and structure refinement for compounds 1 and 5

where n = number of reflections and p = total number of parameters refined.

Bond Distances					
1		5			
Al(1)-O(1)	1.7575(19)	Al(1)-O(1)	1.8388(12)		
Al(1)-C(17)	1.964(3)	Al(1)-C(1)	1.9883(18)		
Al(1)-C(18)	1.970(3)	Al(1)-C(2)	1.9841(17)		
Al(1)-N(1)	2.004(2)	Al(1)-N(1)	2.1436(15)		
		Al(1)-O(1A) ^a	1.9936(12)		
	Bond	Angles			
O(1)-Al(1)-C(17)	112.55(11)	O(1)-Al(1)-C(2)	129.92(7)		
O(1)-Al(1)-C(18)	114.13(10)	O(1)-Al(1)-C(1)	114.48(7)		
C(17)-Al(1)-C(18)	118.62(12)	C(2)-Al(1)-C(1)	115.43(8)		
O(1)-Al(1)-N(1)	92.25(7)	O(1)-Al(1)-O(1A) ^a	74.44(5)		
C(17)-Al(1)-N(1)	108.80(11)	C(2)-Al(1)-O(1A) ^a	95.34(6)		
C(18)-Al(1)-N(1)	106.86(11)	C(1)-Al(1)-O(1A) ^a	97.49(6)		
		O(1)-Al(1)-N(1)	86.37(5)		
		C(2)-Al(1)-N(1)	92.39(7)		
		C(1)-Al(1)-N(1)	95.89(7)		
		O(1A) ^a -Al(1)-N(1)	159.89(6)		

Table S2. Bond distances (Å) and angles (°) for compound 1 and 5

^a Symmetry transformations used to generate equivalent atoms: -x+1,-y+1,-z+1

Chromatogram AD 2						
#	Title	Mn	Mw	Mz	Mz1	Mv
1	40.1cd	18797	19983	21746	24287	0
	Average	18797	19983	21746	24287	0
	%RSD	0.000	0.000	0.000	0.000	0.000
	Maximum	18797	19983	21746	24287	0
	Minimum	18797	19983	21746	24287	0
	SD	0	0	0	0	0

Figure S5. GPC profile of PCL with M_n = 18797 Da and M_w/M_n = 1.06 (entry 6 in Table 1)

Figure S6. NMR spectra of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex **6**

Figure S7. TGA analysis of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex **6**

Figure S8. DSC analysis of PCL with M_n = 18797 Da and M_w/M_n = 1.06 prepared with complex **6**

GPC Summary						
Chron	natogram AD 2					
#	Title	Mn	Mw	Mz	Mz1	Mv
1	41.lcd	25869	29550	36399	48564	0
	Average	25869	29550	36399	48564	0
	%RSD	0.000	0.000	0.000	0.000	0.000
	Maximum	25869	29550	36399	48564	0
	Minimum	25869	29550	36399	48564	0
	SD	0	0	0	0	0

Figure S9. GPC profile of PLA with M_n = 25869 Da and M_w/M_n = 1.14 (entry 2 in Table 2)

Figure S10. NMR spectra of PLA with M_n = 25869 Da and M_w/M_n = 1.14 prepared with complex **6**

Figure S11. TGA analysis of PLA with M_n = 25869 Da and M_w/M_n = 1.14 prepared with complex **6**

Figure S12. DSC analysis of PLA with M_n = 25869 Da and M_w/M_n = 1.14 prepared with complex **6**

Chror	natogram AD 2					
#	Title	Mn	Mw	Mz	Mz1	Mv
1	75.lcd	14744	15323	16172	17489	0
	Average	14744	15323	16172	17489	0
	%RSD	0.000	0.000	0.000	0.000	0.000
	Maximum	14744	15323	16172	17489	0
	Minimum	14744	15323	16172	17489	0
	SD	0	0	0	0	0

Figure S13. GPC profile of copolymer of cyclohexene oxide and phthalic anhydride with M_n = 14744 Da and M_w/M_n = 1.04 (entry 4 in Table 4)

Figure S14. NMR spectra for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**

Figure S15. TGA analysis for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**

Figure S16. DSC analysis for copolymer of cyclohexene oxide and phthalic anhydride with $M_n = 14744$ Da and $M_w/M_n = 1.04$ prepared with complex **6**