Supplementary Information

Layered Ferrimagnets Constructed from Charge-Transferred Paddlewheel [Ru₂] Units and TCNQ Derivatives: The Importance of Interlayer Translational Distance in Determining Magnetic Ground State

Wataru Kosaka,^{ab} Zhaoyuan Liu^b, and Hitoshi Miyasaka^{*ab}

^a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai, Miyagi 980-8577, Japan

^b Department of Chemistry, Graduate Schllo of Science, Tohoku University, 6-3 Aramaki-Aza-

Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

e-mail: miyasaka@imr.tohoku.ac.jp

Corresponding author* Prof. Dr. Hitoshi Miyasaka Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan E-mail: <u>miyasaka@imr.tohoku.ac.jp</u> Tel: +81-22-215-2030

FAX: +81-22-215-2031

Fig S1. Thermal gravimetric analysis (TGA) profiles for **1** (a), **2** (b), and **3** (c) with a heating rate of 5 K min⁻¹ under N₂ atmosphere.

Fig. S2 Infrared spectra in the range of 2000–2300 cm⁻¹ for **1** and TCNQ (a), **2** and TCNQMe₂ (b), and **3** and TCNQ(OEt)₂ (c) measured on KBr pellets at room temperature.

Fig. S3 Powder reflection spectra of 1-3 measured on pellets diluted with BaSO₄.

Fig. S4 Packing diagrams projected for **2** along (1 0 0) plane (a) and *c* axis (b), where C, N, and Ru atoms are represented in gray, blue, and purple, respectively. Equatorial carboxylate ligands for [Ru₂] units, crystallization solvents, and hydrogen atoms are omitted for clarity. l_1 and l_2 in Fig.b are defined by the vertical distance and the nearest [Ru₂]…[Ru₂] distance between (1 0 0) planes, respectively.

Fig. S5 Packing diagrams of **1**. A view along *a*-axis (a) and *c*-axis (b), where atoms C, N, O, F and Ru are represented in gray, blue, red, green, and purple, respectively. Crystallization solvents are depicted in cyan. Hydrogen atoms are omitted for clarity.

Fig. S6 Packing diagrams of **2**. A view along *a*-axis (a) and *c*-axis (b), where atoms C, N, O, F and Ru are represented in gray, blue, red, green, and purple, respectively. Crystallization solvents are depicted in cyan. Hydrogen atoms are omitted for clarity.

Fig. S7 Packing diagrams of **3** *b*-axis, where atoms C, N, O, F and Ru are represented in gray, blue, red, green, and purple, respectively. Crystallization solvents are depicted in cyan. Hydrogen atoms are omitted for clarity.

Fig. S8 Magnetic phase transition temperature ($T_{\rm C}$ or $T_{\rm N}$) vs. interlayer vertical distance (l_1 , Fig. 2) plots for 1–3 and reported [Ru₂]/TCNQR_x D₂A system, where the compound with ferromagnetic and antiferromagnetic ground states are colored in red and blue, respectively: 4, [{Ru₂(2,4,6-F₃PhCO₂)₄}₂(TCNQ)]•2DCM•2(p-xylene); ¹ 5, [{Ru₂(p-FPhCO₂)₄}₂(BTDA-TCNQ)]•2DCM•2(p-chlorotoluene); ² 6, [{Ru₂(2,3,5-Cl₃PhCO₂)₄}₂(TCNQMe₂)]•4DCM; ³ 7, [{Ru₂(m-ClPhCO₂)₄}₂{TCNQ(MeO)₂}]•3.3DCM•2TCE; ⁴ 8, [{Ru₂(CF₃CO₂)₄}₂(TCNQF₄)]•3(p-xylene); ^{5,6,7} 9, [{Ru₂(o-FPhCO₂)₄}₂(BTDA-TCNQ)]•4DCM; ² 10, [{Ru₂(o-ClPhCO₂)₄}₂{TCNQ(MeO)₂}]•DCM; ⁸ 11, [{Ru₂(o-FPhCO₂)₄}₂{TCNQ(MeO)₂}]•4DCM.⁹

References in ESI

- (1) W. Kosaka, H. Fukunaga and H. Miyasaka, *Inorg. Chem.*, 2015, 54, 10001–10006.
- (2) N. Motokawa, T. Oyama, S. Matsunaga, H. Miyasaka, M. Yamashita and K. R. Dunbar, *CrystEngComm*, 2009, **11**, 2121–2130.
- (3) J. Zhang, W. Kosaka, K. Sugimoto and H. Miyasaka, J. Am. Chem. Soc., 2018, in press.
- (4) W. Kosaka, M. Itoh and H. Miyasaka, *Mater. Chem. Front.*, 2018, **2**, 497–504.
- (5) H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita and K. R. Dunbar, *J. Am. Chem. Soc.*, 2006, **128**, 11358–11359.
- (6) H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota and K. R. Dunbar, *J. Am. Chem. Soc.*, 2010, **132**, 1532–1544.
- (7) K. Nakabayashi, M. Nishio, K. Kubo, W. Kosaka and H. Miyasaka, *Dalton Trans.*, 2012, **41**, 6072–6074.
- (8) N. Motokawa, S. Matsunaga, S. Takaishi, H. Miyasaka, M. Yamashita and K. R. Dunbar, *J. Am. Chem. Soc.*, 2010, **132**, 11943–11951.
- (9) H. Fukunaga, T. Yoshino, H. Sagayama, J. Yamaura, T. Arima, W. Kosaka, H. Miyasaka, *Chem. Commun.*, 2015, **51**, 7795–7798.