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1 SYNTHETIC METHODS  

The synthesis of the transition metal carbodiimides MNCN (M = Co, Co0.9Ni0.1, Ni, Mn, Cu) was adapted following 

the literature protocols described by Krott et al.1–4, Ressnig et al.5–7 and Koziej et al.8 For the metals investigated 

in this study the precipitation method with ammonium carbonate was found to be most straightforward and to 

afford smaller particle sizes below 10 μm that are favourable for catalytic applications. MnNCN and CuNCN were 

obtained in one step, while Co and Ni salts form hydrogencyanamide precursors (M(HNCN)2) that are subjected 

to thermal decomposition. Careful exclusion of oxygen and water is required, especially in the decomposition 

step of the precursors in salt melts, to avoid formation of metal oxide impurities. During heating of the M(HNCN)2 

precursors to 400 °C mainly melamine (C3H6N6) is produced by trimerization of cyanamide. While this side 

product sublimates from the molten eutectic-salt, it can also undergo parallel polycondensation reactions (by 

elimination of NH3) via melem (C6H6N10) and further steps (C3nN(4-5)nH(0-3)n, n>2) up to the formation of graphitic 

C3N4. Lowering the pressure in this step helps to avoid formation of insoluble polymeric carbon nitrides by faster 

removal of melamine. The following details describe the individual procedures used to obtain the different MNCN 

materials investigated in this study.  

1.1 CoNCN 

1.1.1 Synthesis of Co(HNCN)2 
CoCl2 (1 mmol) was heated in cyanamide (30 mmol) to 75 °C until it was completely dissolved. Next, (NH4)2CO3 
(2 mmol) was added under stirring. After addition of deionized water the precipitate was separated by 
centrifugation and dried.  

1.1.2 Synthesis of CoNCN  
A mixture of 93 mg Co(NCNH)2 (0.66 mmol) and 2.4 g LiCl-KCl eutectic salt (50:50 wt%) was dried in a in two-neck 
round-bottom flask under vacuum at 50-80 °C for 8 h. The mixture was then heated to 400 °C under N2 for 2.5 h. 
The temperature was controlled using a heating mantle and a thermal sensor introduced into the mixture 
through a septum. After cooling to room temperature the salt cake was dissolved in deionized water and the 
solid product was collected by filtration. The product was washed with deionized water and dried in air.  

1.1.3 Co0.9Ni0.1NCN  
0.23 g CoCl2 (1.8 mmol) and 26 mg NiCl2 (0.2 mmol) were heated to 75°C in 2.5 g cyanamide (60 mmol). 
0.38 g (NH4)2CO3 (4 mmol) were added to the stirred solution. After addition of deionized water the product 
Co0.9Ni0.1(HNCN)2 was separated by filtration and dried in air. Co0.9Ni0.1NCN was obtained via the same thermal 
decomposition route as described in 1.1.2.  

1.1.4 NiNCN  
5 mmol NiCl2·6 H2O and 26 mmol cyanamide were dissolved in 20 ml 12.5% NH3. After stirring overnight, further 
NH3 and cyanamide were added until a blue solution was formed. This was left to crystallize and was filtered 
subsequently to collect a green precipitate. Ni(NCNH)2 powder was obtained in both filtrations as confirmed by 
PXRD (Fig. 2, main text).  
630 mg Ni(NCNH)2 (4.5 mmol) were dried in 13 g LiCl-KCl eutectic salt (50:50 wt%) in a in two-neck round-bottom 
flask under vacuum at room temperature for 30 min. For the second step see 1.1.2.  

1.1.5 MnNCN  
MnCl2 (4 mmol) and cyanamide (120 mmol) were used in the same precipitation procedure with (NH4)CO3 as 
described above (see 1.1.1) and directly afforded MnNCN. PXRD measurements showed low crystallinity, but no 
manganese oxide side product peaks (Fig. 2, main text).  

1.1.6 CuNCN  
CuCl2 (4 mmol) and cyanamide (120 mmol) were used in the same procedure as above (see 1.1.1) while heating 
to 65°C and CuNCN was obtained by filtration.  
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2 CATALYST INK PREPARATION 

5 mg MNCN were gently ground in an agate mortar and mixed with 42.2 µL Nafion (5% solution, Aldrich) and  
320 µL ethanol. 
 

2.1 Screen printed electrode modification 
Screen printed electrodes (SPEs) (Fig. S1) with working electrode (WE) area diameter of 4 mm were coated by 

dropcasting the corresponding inks that had been sonicated for 10 min. An electrode loading series was prepared 

with 1, 5 and 10 µL ink. The dropcasted volumes resulted in the following coverages of the SPE-WE area: 1 µL 

(partial coverage), 5 µL (full coverage), 10 µL (excess coverage). Another series of electrodes was prepared by 

careful manual application of ink until a thin apparent monolayer of particles was achieved using 1.5 to 2.0 µL 

ink. 

 
Fig. S1. (a) Screen printed electrode (SPE) layout.a (b) Pristine uncoated electrode. (c) Electrode surface coated by 

dropcasting 2 µL CoNCN/Nafion ink. 

 

 

2.2 Screen printed electrode chronoamperometry 
Ex situ chronoamperometry experiments were conducted by a stepwise (180 s) increase of the potential in the 

range of 0.3 - 1.0 V versus Ag/AgCl. The experiment was done with 2 µL ink loaded SPEs in 0.1 M KOH electrolyte 

with a glassy carbon counter electrode. For the catalytically active carbodiimides the procedure was repeated 

with new electrodes and 600 s steps up to 1.2 V vs. Ag/AgCl.  

Additional chronoaperometry was performed with the SPE droplet microvolume setup (50 μL electrolyte) as used 

for the operando experiments. 18O labelled water was used for electrolyte preparation und the SPEs were 

inserted in a septum sealed glass vial to minimize atmospheric moisture exchange. The post catalytic Raman 

spectra are compared in Fig. S9. Attempts of Raman coupled operando voltammetry by covering the SPE with a 

thin glass slide (5 μL electrolyte microlayer) did not provide optimal results, because the current density was 

observed to decrease quickly and the Raman focus was disturbed as soon as gas evolution set in. 

 

 

 

 

 

  

                                                           
a http://www.dropsens.com/en/screen_printed_electrodes_pag.html 
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Fig. S2. (a) Chronoamperometry response of MNCN modified SPEs reproduced in a conventional 3-electrode setup. 

Current fluctuations in the CP steps are caused by oxygen bubble formation and their release. (b) Representation as 

Tafel plot. (c) Extended duration (600 s per step) and potential range (0.3 – 1.2 V vs. Ag/AgCl, 1.242 – 2.142 V vs. RHE, 

12 – 912 mV η) chronoamperometry response of the active MNCN modified SPEs reproduced as shown in (a). Clearly 

irregular current is observed for CuNCN indicating transformations involving redox-active species and possibly chemical 

reaction steps. NiNCN shows lower and decreasing current compared to the Co-based carbodiimides. Consecutive 

chronoamperometry experiments with the same NiNCN electrode reproduce the current decrease consistently in each 

step but show no persistent activity loss. 

3 RRDE VOLTAMMETRY 

The dimensions of the RRDE used are as follows: GC disc (r = 2.5 mm, Ø = 5 mm), 375 µm gap, Pt ring (width = 

375 µm, rinner = 2.875 mm, router = 3.250 mm, Øinner = 5.750 mm, Øouter = 6.500 mm). With this geometry the 

theoretical collection efficiency 𝑁 for the bare uncoated RRDE was calculated to be 25.01% using Equation 1. The 

literature value from the distributor Metrohm is 24.9% and the experimental determination with K4[Fe(CN)6] as 

standard and blank measurements afforded a value of 24.75% ± 0.25% with a linear response region from 400 

to 2000 rpm. Due to the change of surface topology of the GC disc by the coating layer the rotational electrolyte 

flow becomes more turbulent and the real mass transport dynamics consequently deviate from the theoretical 

model. Therefore, the real collection efficiency is lowered and its correlation to the square root of rotation speed 

deviates from ideal linearity. Nevertheless it remains constant for similar electrodes, in this case 17%, and it is 

independent of the applied potential. This allows comparison of the ratio of corresponding disc and ring currents 

attributed to water oxidation and oxygen reduction in contrast to irreversible and surface confined side 

reactions. 

𝑁𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 1 − 𝜎𝑂𝐷
2 + 𝜎𝐵

2

3 − 𝐺(𝜎𝐶  ) − 𝜎𝐵

2

3𝐺(𝜎𝐴 ) +  𝜎𝑂𝐷
2 𝐺(𝜎𝐶  𝜎𝑂𝐷

3 )             (1) 

Equation 1: Theoretical collection efficiency.9   

c) 



S5 

 

4 EX SITU VIBRATIONAL SPECTROSCOPY 

4.1 Ex situ Raman spectroscopy 
Ex situ Raman spectra collected using different excitation wavelengths (532, 633 and 785 nm) exhibit qualitatively 

similar peaks which differ only with respect to backgrounds and intensities (see Fig. S3). The excitation 

wavelength of the 532 nm laser was selected for ex situ experiments due to its optimal signal to noise ratio. 

Under operando conditions the 785 nm laser was favoured due to lower fluorescence. 

 

Fig. S3. Ex situ Raman spectra recorded with different excitation wavelengths. Spectra acquisitions with 633 and 

785 nm wavelengths require increasing accumulation times (up to 8 h).  

 

 

Fig. S4. Raman spectra comparison of pristine MNCN powders and pre- and post-catalytic SPEs vs. oxide references.  
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4.2 Ex situ FT-IR spectroscopy 
The experimental MNCN (M = Mn, Co, Ni) FT-IR spectra show additional vibrations between 1100 cm-1 and 

1700 cm-1 due to the overlapping peaks of side products. These can most likely be attributed to cyanamide 

polymerization for MnNCN and CuNCN and melamine polycondensation (C3nN(4-5)nH(0-3)n with n > 2) for CoNCN 

and NiNCN (Fig. S5). The very weak signals above 3000 cm-1 can either result from the same side products or 

from combinational NCN modes (νs + νas = 3203-3211 cm-1). 
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Fig. S5. Comparison of FT-IR spectra of typical impurities with CoNCN as a representative carbodiimide showing residual 

side product peaks of the N-C vibrations of the cyanamide condensation products melamin, melem and carbon nitride 

(g-C3N4) at 800 cm-1 and broad overlapping absorption from 1000-1700 cm-1. Co3O4 (543 cm-1) peaks are absent in 

pristine CoNCN. 

 

4.3 Analysis of dissolution and etching phenomena 
The leaching stability was evaluated by stirring pristine MNCN samples for 20 h in 1.0 M or 0.1 M KOH, followed 

by centrifugation, washing, and filtration (0.22 micron filter). Spectroscopic and PXRD investigations of the 

obtained solids and comparisons with the respective pristine materials show no significant oxide formation after 

exposure to basic conditions (see Figs. S6-S8).  

 

Fig. S6. Powder XRD patterns before and after aging of CoNCN and CuNCN samples in 0.1 M KOH (CuNCN: Cu-Kα 

radiation; CoNCN: Mo-Kα radiation) vs. reference patterns of pristine MNCN compounds. 
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Fig. S7. FT-IR spectra of CoNCN, CuNCN and Co0.9Ni0.1NCN before and after ageing in KOH. The only additional feature 

arising in post-treatment spectra is a small peak at ca. 570 cm-1 for CoNCN. This does not match with CoO or Co(OH)2 

nor with Co3O4 showing absorptions at 550 cm-1 and 640 cm-1. Overlap of the latter signal is unlikely given that no peak 

shift was observed for the NCN deformation mode peaks of CoNCN (650 cm-1). 
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Fig. S8. Raman spectra of CoNCN, CuNCN and Co0.9Ni0.1NCN before and after ageing in KOH. Relative peak intensity 

changes have been observed to depend on crystallinity and orientation of the crystallites. The small feature at  

1200 cm-1 in the spectrum of CoNCN may indicate low amounts of NCN in cyanamide configuration.  
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Fig. S9. Representative averages of Raman mappings showing the peak shift (Δν) induced by using 97% 18O enriched 

water (grey lines = optical guidelines) for (a) electrocatalytic tests with CuNCN (# indicates Δν = 15 cm-1 (calculated 

17 cm-1), * indicates Δν = 13 cm-1 (calculated 34 cm-1)). Comparison of dry catalyst layer and electrolyte covered catalyst 

layer show no significant change other than a reduced signal amplitude and rising scattering background below  

200 cm-1 caused by KOH. Representative averages of Raman mappings (b) CoNCN SPEs, (c) NiNCN SPEs and (d) 

Co0.9Ni0.1NCN SPEs, all after electroanalytical procedures in normal and isotope enriched electrolyte.  

CoNCN (Fig. S9b): No oxide peaks arise and no peak-shift occurs in any of the measurements. Careful inspection of 

several samples suggests that the intensity of the shoulder at 460 cm-1 appears to increase as well as of the peaks 

around 1200 cm-1 below the symmetric stretching vibration. The latter are usually found in pristine material only very 

(a) 

(b) 

(c) (d) 
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weak or hidden as shoulders (cf. Fig. S8). They are visible on the pre-catalytic layer without electrolyte (light blue), 

increase slightly in contact with electrolyte (dark blue) and appear to be more pronounced after catalysis (green, 

orange, and brown). This trend suggests a correlation with the duration of exposure to aqueous solutions. A plausible 

hypothesis is the formation of the cyanamide form of NCN on the surface by protonation or hydrolysis. The NCN 

symmetric stretching vibration is found in this region of Raman shifts for H2NCN (1152 cm-1) as well as those of other 

metal-NCN species with N-C-N angles deviating from 180°.10 Furthermore, no oxygen involvement is indicated for this 

signal as seen by the absence of an isotope shift (orange and brown trace). 

NiNCN (Fig. S9c): No significant peak shift is observed among the measurement series. 

Co0.9Ni0.1NCN (Fig. S9d): No peaks shifts are observed after exposure to 18O either. (The very low intensity impurity 

peak around 700 cm-1 was only observed for a specific spot of the sample during the mappings. It might thus be an 

artefact of local thermal Raman laser damage, especially given that it is barely discernible in the post-electrocatalytic 

samples any more and does not exhibit an 18O induced shift.) 

 

4.4 Phonon calculations 
Density function theory (DFT) was implemented using the CP2K package.11 Calculations were carried out into the 

Kohn-Sham formalism involving Gaussian and Plane Waves based methods.12,13 The Goedecker-Teter-Hutter 

(GTH) pseudopotentials11,14 and the DZVP-MOLOPT-GTH basis sets13 were used to describe the molecules with a 

plane wave energy cut-off of 500 Ry. The vibrational spectra of bulk CoNCN were calculated by ab-initio molecular 

dynamics (AIMD) simulations. Calculations were implemented at 300 K using the Nose-Hoover chain 

thermostat15,16  with a time step of 0.5 fs in the canonical ensemble (NVT). The system was equilibrated for 5 ps, 

and then allowed to evolve for 10 ps. The power and IR vibrational spectra were calculated by means of the 

mass-weighted velocity autocorrelation function and dipole moment autocorrelation function as implemented 

in the TRAVIS program17,18 and defined respectively according to: 

 

𝑃(𝜔) = 𝑚 ∫〈�̇�(𝜏)�̇�(𝑡 + 𝜏)〉𝜏e−𝑖𝜔𝑡d𝑡,               (2) 

𝐴(𝜔) ∝ 𝑚 ∫〈�̇�(𝜏)�̇�(𝑡 + 𝜏)〉𝜏e−𝑖𝜔𝑡d𝑡.               (3) 

The calculated atomic contribution to the vibrations and the directions of displacement match the expectation 

from well-known molecular NCN vibrations (above 500 cm-1) very well, indicating acceptable calculated results. 

See Fig. S10. The lattice phonons appear at lower wavenumbers, involve Co and are dominated by atom 

displacement in the ab-plane, see Fig. S11. 

 

Fig. S10. Comparison of experimental and calculated vibrational spectra for CoNCN. Alignment of experimentally 

observed frequencies is achieved by a scale shift of 42 cm-1, which is acceptable as the absolute energy scale resulting 

from theoretical approaches frequently contains uncertainties in the same order of magnitude.19  
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Fig. S11. Calculated vibrational spectra of CoNCN showing the projected vibrational modes over single atoms and 

directions. All vibrational peaks in the range 300-900 cm-1 correspond to vibrational modes arising from the CoNCN 

matrix. 
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5 OPERANDO XAS  

 

Fig. S12. (a) The change of CuNCN XANES at high potential (1.2 V) was reproducibly detected on 3 different electrodes 

and also measured in both fluorescence and transmission mode. The latter was achieved after transferring the washed 

coating onto a Kapton film after the operando experiment. (b) – (f) Operando XAS spectra of MNCN modified SPEs. 

Each spectrum is merged from accumulations at a given applied potential starting from 0.0 V (green) via yellow to 1.2 

V (red). The observed variations do not follow a distinct trend and disturbance of bubble formation causes random 

intensity jumps. A horizontal edge energy shift may be apparent to the eye but is not confirmed by the determination 

of the first derivative maximum. In fact this minor trend is more likely related to saturation of the detector, which is 

indicated by the isosbestic point at the normalized absorption intensity of 1.0. 
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Fig. S13. Top: Energies of whiteline peak and absorption edge versus potential. Bottom: Current density versus 

potential (full lines: CoNCN, dashed lines: Co0.9Ni0.1NCN). No significantly correlated edge shift (less than 1 eV) is 

observed during the potential scan up to 1.4 V. Oxygen evolution onset is observed above 0.6 V. 

6 OPERANDO RAMAN SPECTROSCOPY 

Raw data was averaged and smoothed depending on the accumulated signal intensity and scattering properties 

of the sample. Spectra represented in overlay plots are shifted by a vertical offset to increase visibility. The peak 

at 265 cm-1 cannot be attributed to the catalyst or side products from synthesis, as it is neither found in any 

reference, nor in pristine, pre- or post-catalytic ex situ measurements reported elsewhere. As this signal also 

occurred in spectra with very low overall scattering intensity, it is unlikely to be related to MNCN and is thus 

rather a spectral artefact or a phenomenon restricted to the operando conditions or the specific setup.  
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Fig. S14. Operando Raman spectra of 10 μL loading Co0.9Ni0.1NCN@Nafion coated SPE. The most characteristic MNCN 

peak at 400 cm-1 is well visible and the peaks at 220 cm-1 and 650 cm-1 are also attributed to Co0.9Ni0.1NCN (raw data 

were smoothed by 5 points adjacent averaging, the baseline was subtracted and intensity was normalized to the main 

peak at 400 cm-1). The peak at 265 cm-1 is a frequently occurring measurement artefact (see above). 
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6.2 NiNCN 
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Fig. S15. Operando Raman spectra of 10 μL loading NiNCN@Nafion coated SPE. Very weak scattering properties only 

permitted detection of the characteristic MNCN peak at 400 cm-1.  

 

6.3 MnNCN 
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Fig. S16. Operando Raman spectra of 10 μL loading MnNCN@Nafion coated SPE. The characteristic MNCN peak at 

400 cm-1 is well visible (raw data were smoothed by 5 points adjacent averaging, the baseline was subtracted, and 

intensity was normalized to the main peak at 400 cm-1). The peak at 265 cm-1 is a frequently occurring measurement 

artefact.  
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6.4 CuNCN 
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Fig. S17. Operando Raman spectra of 10 μL loading CuNCN@Nafion coated SPE (CuO peaks were not detectable due 

to low overall scattering intensity). 
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