ESI

Enhanced gas separation performance of an ultramicroporous pillared-layer framework induced by hanging bare Lewis basic pyridine groups

Haipeng Li,^a Shu'ni Li,^{*a} Xiangyang Hou,^{a,b} Yucheng Jiang, ^a Mancheng Hu, ^a Quan-Guo Zhai^{* a}

^a Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and

Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal

University, Xi'an, Shaanxi, 710062, P. R. China

^b Department of Chemistry and Chemical Engineering, Yan'an University Laboratory of New Energy & New

Function Materials, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an University,

Shaanxi 716000, China

*Corresponding authors,

E-mail: lishuni@snnu.edu.cn; zhaiqg@snnu.edu.cn

Compound	SNNU-95 (CCDC 1832498)
Empirical formula	$C_{44}H_{28}Co_2N_7O_7$
Formula weight	884.59
Crystal system	Monoclinic
Space group	P2(1)/c
a(Å)	11.3738(4)
b(Å)	29.4286(10)
<i>c</i> (Å)	17.1665(8)
α (deg)	90
<i>θ</i> (deg)	99.870(4)
γ (deg)	90
Volume(Å ³)	5660.8(4)
Z	4
d _{calcd.} (g ⁻ cm ⁻³)	1.038
μ(mm ⁻¹)	0.629
F(000)	1804
Reflections collected/unique	26765 / 11562
R _{int}	0.0492
Data/restraints/parameters	11562 / 0 / 541
GOF on <i>F</i> ²	1.062
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0786, 0.2306
R_1^a , wR_2^b (all data)	0.1011, 0.2473

 Table S1. Crystal data and structure refinements for SNNU-95.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$.

Table S2. Selected	bond lengths (<i>i</i>	Å) and angles	(°) for SNNU-95 .
--------------------	-------------------------	---------------	--------------------------

Co(1)-O(6)	2.048(3)	Co(2)-O(1)	2.144(4)
Co(1)-O(4) #1	2.075(3)	Co(2)-N(2) #3	2.150(3)
Co(1)-N(6) #2	2.085(4)	Co(2)-O(2)	2.188(4)
Co(1)-N(5)	2.144(3)	Co(2)-O(3) #1	2.015(4)
Co(1)-N(3) #3	2.169(3)	Co(2)-N(4)	2.137(3)
		Co(2)-O(5)	1.975(3)
N(5)-Co(1)-N(3)#3	177.38(14)	O(5)-Co(2)-O(1)	154.49(16)
O(5)-Co(2)-O(3)#1	100.20(15)	O(3)#1-Co(2)-O(1)	105.29(16)
O(5)-Co(2)-N(4)	92.35(15)	N(4)-Co(2)-O(1)	86.32(15)
O(3)#1-Co(2)-N(4)	90.53(14)	O(5)-Co(2)-N(2)#3	88.12(15)
N(6)#2-Co(1)-N(5)	93.76(15)	O(3)#1-Co(2)-N(2)#3	92.39(14)
O(6)-Co(1)-N(3)#3	91.82(13)	N(4)-Co(2)-N(2)#3	176.91(14)
O(4)#1-Co(1)-N(3)#3	89.37(13)	O(1)-Co(2)-N(2)#3	91.94(14)
N(6)#2-Co(1)-N(3)#3	88.84(14)	O(5)-Co(2)-O(2)	95.47(16)
O(6)-Co(1)-O(4)#1	163.70(14)	O(3)#1-Co(2)-O(2)	164.06(17)
O(6)-Co(1)-N(6)#2	96.43(15)	N(4)-Co(2)-O(2)	85.91(15)
O(4)#1-Co(1)-N(6)#2	99.84(14)	O(1)-Co(2)-O(2)	59.02(17)
O(6)-Co(1)-N(5)	87.63(14)	N(2)#3-Co(2)-O(2)	91.00(15)
O(4)#1-Co(1)-N(5)	90.44(13)		

Symmetry codes: #1 x,-y+1/2,z-1/2;#2 -x+1,y+1/2,-z+1/2 ; #3 x+1, y, z.

Fig. S1 The NMR spectrum of the synthesized H₂DBPT ligand. HNMR (CDCl₃, 400 MHz): 7.667 (s, 1H; H_{Ar}), 7.601(s, 4H; H_{Py}), 7.396(s, 2H; H_{Py}), 6.839(s, 4H; H_{Py}), 6.72 (s, 2H; H_{Ar}).

Fig. S2 PXRD patterns for the synthesized H₂DBPT ligand at room temperature.

Fig. S3 FT-IR spectra for H_2DBPT (top) and SNNU-95 (bottom).

Fig. S4 PXRD patterns for SNNU-95 at room temperature.

Fig. S5 TGA curve for SNNU-95.

Fig. S6 The luminescent spectra of H_2DBPT (top) and SNNU-95 (bottom) in solid state at room temperature.

(a)

(b)

Fig. S7 1D chain generated by carboxylate groups from DBPT (a), 2D layer viewed from different directions (b), and the strong $\pi \cdots \pi$ stacking interactions within 2D layer in **SNNU-95**.

(a)

(b)

Fig. S8 3D pillared-layer framework viewed from b-axis direction (a) and strong $\pi \cdots \pi$ stacking interactions within pillars in **SNNU-95**.

Fig. S9 Fitted gas adsorption isotherms of **SNNU-95** measured at 273 K and 298 K (left), and their corresponding isosteric heats of adsorption (Q_{st}) (right).

Fig. S10 Comparison of experimental and simulated adsorption isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of **SNNU-95** for C_2H_4/CH_4 (a, 50-50,) and C_2H_2/CH_4 (b-d: 15-85, 50-50 and 85/15).

Fig. S11 The comparison of C_2H_2/CH_4 , C_2H_4/CH_4 and CO_2/CH_4 selectivity values (50-50) at 273K and low pressure for **SNNU-95**.

Fig. S12 Comparison of experimental and simulated adsorption isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of **SNNU-95** for C_2H_2/C_2H_4 (50-50) at different temperatures.

Fig. S13 Comparison of experimental and simulated adsorption isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of **SNNU-95** for C_2H_2/CO_2 with different ratios.