Supporting Information For

A Palladacyclic N-Heterocyclic Carbene System Used to Probe the Donating Capabilities of Monoanionic Chelators

Xuechao Yan,^a Rui Feng,^a Chunhui Yan,^a Peng Lei,^a Shuai Guo,^{* a} Han Vinh Huynh^{*b}

^a Department of Chemistry, Capital Normal University, Beijing, People's Republic of China 100048.

^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

1. Figure SI-1. Molecular structures of complexes 6 and 7 showing 50% probability ellipsoids	2
2. Figure SI-2. Molecular structure of complex 10 showing 50% probability ellipsoids.	2
3. Scheme SI-1. Syntheses of monocationic triazolium salts c and d	2
4. Table SI-1. Selected Interatomic Distances (Å) and Angles (°) for Complexes 5, 6, 7,	and
103	
5. Table SI-2. Selected X-ray Crystallographic Data for Complexes 5, 6, 7,	and
104	
6. Figure SI-3. The ^{<i>i</i>} Pr ₂ -bimy ¹³ C _{carbene} signals on a ¹³ C NMR scale indicating the relative donor abilities of	of trz
ligands.	5
7. Figure SI-4. 1D NOESY spectrum of palladacyclic complex 12 with signals ($\delta = 5.96$ ppm) of isopropy	/l C–
H protons (H _a) suppressed.	.5

Figure SI-1. Molecular structures of complexes 6 and 7 showing 50% probability ellipsoids. Hydrogen atoms, solvent molecules, and another crystallographically independent molecule (for 6) are omitted for clarity.

Figure SI-2. Molecular structure of complex **10** showing 50% probability ellipsoids. Hydrogen atoms and another crystallographically independent molecule are omitted for clarity.

Scheme SI-1. Syntheses of monocationic triazolium salts **c** and **d**. Condition for step (i): a) NaNO₂, HCl; b) NaN₃; c) 1 mol% [CuCl(IPr)], 1-butyne, CH₃OH/H₂O. Condition for step (ii): for **c**, (CH₃CH₂)₃OBF₄, 1,2-dichloroethane; for **d**, benzyl bromide, neat.

Complex	5		6	
Bond Distances (Å)	Pd1-C11	1.969(4)	Pd1-C11	2.002(4)
	Pd1–N1	2.087(3)	Pd1–N1	2.095(3)
	Pd1–Br1	2.5134(5)	Pd1–Br1	2.5236(5)
	Pd1-C12	1.973(4)	Pd1-C13	1.972(4)
	H19…Pd1	2.756	H23…Pd1	2.778
	H22···Pd1	2.687	H14…Pd1	2.666
Bond Angles (°)	C11-Pd1-C12	92.72(15)	C11-Pd1-C13	92.01(15)
	C12–Pd1–Br1	88.25(10)	C13–Pd1–Br1	89.10(11)
	N1–Pd1–Br1	97.60(9),	N1–Pd1–Br1	97.75(9)
	C11–Pd1–N1	81.42(14)	C11–Pd1–N1	81.28(14)
	C19–H19…Pd1	120.66	C23–H23…Pd1	121.08
	C22–H22···Pd1	121.44	C14–H14…Pd1	122.70
Complex	7		10	
Bond Distances (Å)	Pd1C14	1.965(4)	Pd1–Br1	2.4483(6)
	Pd1-N1	2.091(3)	Pd1–Br2	2.4627(6)
	Pd1–Br1	2.5020(5)	Pd1–C1	2.044(5)
	Pd1–C1	1.975(4)	Pd1-C20	2.037(5)
	H21…Pd1	2.750		
	H24…Pd1	2.657		
Bond Angles (°)	C14–Pd1–C1	90.91(17)	Br1–Pd1–Br2	169.62(2)
	C14–Pd1–Br1	90.26(11)	Br1–Pd1–C1	92.62(13)
	N1–Pd1–Br1	95.73(10)	Br2–Pd1–C1	89.65(13)
	C1–Pd1–N1	83.05(16)	Br1-Pd1-C20	88.24(13)
	C21–H21···Pd1	120.56	Br2–Pd1–C20	89.10(13)
	C24–H24…Pd1	122.10	C1–Pd1–C20	177.6(2)

 Table SI-1. Selected Interatomic Distances (Å) and Angles (°) for Complexes 5, 6, 7, and 10.

Comp.	5	6	7	10
Formula	C ₂₄ H ₂₆ BrN ₃ Pd	C ₂₅ H ₂₈ BrN ₃ Pd	$C_{26}H_{26}BrN_3Pd$	$C_{32}H_{39}Br_2N_5Pd$
Formula weight	542.79	556.81	566.81	759.90
Crystal size [mm]	$0.45\times0.45\times0.40$	$0.3\times0.25\times0.15$	$0.40\times 0.36\times 0.12$	$0.20\times0.15\times0.10$
Temperature [K]	101.8	99.9(2)	113.8	100.00(10)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/n	P2(1)/c	P2(1)/n	P2(1)/c
<i>a</i> [Å]	12.7217(3)	10.9330(5)	12.6065(6)	32.3500(3)
<i>b</i> [Å]	10.2318(3)	23.8367(10)	10.0844(4)	8.65960(10)
<i>c</i> [Å]	17.5246(4)	18.1370(7)	18.4740(9)	25.0145(2)
α [°]	90.00	90	90.00	90
β[°]	102.488(2)	98.263(4)	98.288(5)	94.5210(10)
γ [°]	90.00	90	90.00	90
V[Å ³]	2227.13(9)	4677.6(3)	2324.05(18)	6985.71(12)
Ζ	4	8	4	8
$D_c [\mathrm{g}\cdot\mathrm{cm}^{-3}]$	1.619	1.581	1.620	1.445
μ [mm ⁻¹]	2.642	2.518	2.536	7.165
θ range [°]	5.98-52	6.57-50.998	6.02-52	7.09-147.816
no. of unique data	12213	28266	12320	41137
Final R indices	$R_1 = 0.0344,$	$R_1 = 0.0414,$	$R_1 = 0.0405,$	$R_1 = 0.0656,$
$(I > 2\sigma(I))$	$wR_2 = 0.0725$	$wR_2 = 0.0725$	$wR_2 = 0.0884$	$wR_2 = 0.1747$
<i>R</i> indices	$R_1 = 0.0412,$	$R_1 = 0.0594,$	$R_1 = 0.0511,$	$R_1 = 0.0714,$
(all data)	$wR_2 = 0.0752$	$wR_2 = 0.0796$	$wR_2 = 0.0941$	$wR_2 = 0.1791$
goodness of fit on <i>F</i> ²	1.042	1.045	1.023	1.063
Peak/hole [e·Å ⁻³]	2.580 / -0.475	0.86 / -0.85	1.385/ -1.092	2.38 / -2.29

 Table SI-2.
 Selected X-ray Crystallographic Data for Complexes 5, 6, 7, and 10.

Figure SI-3. 1D NOESY spectrum of palladacycle **11** with the isopropyl C–H_a signals at δ = 5.98 ppm suppressed.

Figure SI-4. 1D NOESY spectrum of palladacyclic complex **12** with signals ($\delta = 5.96$ ppm) of isopropyl C–H protons (H_a) suppressed.

In a 1D NOESY spectrum, a pre-selected nucleus gives a negative peak while the spatially close nuclei show positive resonances. For example, in the case of **11**, upon selective inversion of the signal at 5.98 ppm for isopropyl C–H protons (H_a), NOE peaks of the physically neighboring nuclei including H_b were observed. No through-space correlation between H_a and the *n*-butyl group was found. All these observations unambiguously confirm the presence of **11** instead of **11**' as the single isomer.