Electronic Supplementary Information β-Ketoiminato-based Copper(II) Complexes as CVD Precursors for Copper and Copper Oxide Layer

Formation

Elaheh Pousaneh^a, Marcus Korb^a, Volodymyr Dzhagan^{b,c}, Marcus Weber^d, Julian Noll^a, Michael Mehring^d, Dietrich R. T. Zahn^b, Stefan. E. Schulz^{e,f}, Heinrich Lang^{a*}

- a) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
- b) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Physics, Semiconductor Physics, D-09107 Chemnitz, Germany
- c) V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
- d) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Coordination Chemistry, D-09107 Chemnitz, Germany
- e) Technische Universität Chemnitz, Center for Microtechnologies, D-09107 Chemnitz, Germany
- f) Fraunhofer Institute for Electronic Nano Systems ENAS, Technologie-Campus 3, D-09126 Chemnitz, Germany

*Corresponding author: Email: heinrich.lang@chemie.tu-chemnitz.de; Phone: +49 (0)371-531-21210;Fax.: +49-(0)371-531-21219

Received ,...

Content

Crystal and structural refinement data of 4a , b , 5 , and 6	3
Hydrogen bridge bond pattern (Å/°) of 4b in the solid state	4
DSC traces of 4b , 5 and 6	4
PXRD pattern of the TG residues of 4a , 5 , and 6	5 - 7
EDX spectra of the deposited films obtained from 4 - 6	8 - 11
XPS spectra of the deposits obtained from 4a and 5	11 - 17
PXRD pattern of the deposits obtained from Layers A, D, H, and F	17 - 18

Complexes	4a	4b	5	6
Empirical formula	$C_{22}H_{40}Cu_2N_4O_6$	$C_{32}H_{46}Cu_2N_4O_7$	$C_{20}H_{34}Cu_2N_2O_8$	$C_{26}H_{50}Cu_2N_4O_7$
Formula mass (g/mol)	583.66	725.81	557.57	657.78
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /n	P2/n	P2 ₁ /c	C2/c
a (Å)	11.0854(10)	12.9343(7)	8.8928(3)	22.4102(19)
b (Å)	10.0289(5)	9.8945(4)	7.2198(2)	12.7485(9)
<i>c</i> (Å)	11.5267(10)	13.0557(6)	18.5441(6)	11.2535(8)
β (°)	99.229(8)	92.231(4)	91.554(3)	94.524(7)
V (Å ³)	1264.89(17)	1669.58(14)	1190.17(6)	3205.1(4)
Z	2	2	2	4
D_{calc} (Mg·m ⁻³)	1.532	1.444	1.556	1.363
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Temperature (K)	115.00(10)	115.00(10)	115.5(4)	116(1)
Absorption coefficient (mm ⁻¹)	1.725	1.325	1.833	1.372
F(000)	612	760	580	1392
Reflections collected	4887	6711	4581	10414
Reflections unique / <i>R</i> int ^{a)}	2221/0.0314	2940 / 0.0274	2093/ 0.0245	2816/0.0750
Goodness-of-fit on <i>F</i> ^{2 b)}	1.040	1.021	1.072	0.957
Data / restraints / parameters	2221 / 0 / 159	2940 / 2 / 210	2093 / 0 / 149	2816 / 2 / 236
θ range for data collection (°)	3.119 to 24.995	2.995 to 25.000	3.132 to 24.997	3.168 to 24.996
Limiting indices	−10 ≤ <i>h</i> ≤ 13,	−15 ≤ <i>h</i> ≤ 12,	−10 ≤ <i>h</i> ≤ 10,	<i>−</i> 26 ≤ <i>h</i> ≤ 26,
	−7 ≤ <i>k</i> ≤ 11,	−11 ≤ <i>k</i> ≤ 10,	$-7 \leq k \leq 8$,	−15 ≤ <i>k</i> ≤ 14,
	−13 ≤ <i>I</i> ≤ 10	−15 ≤ <i>l</i> ≤ 12	-22 ≤/≤20	−13 ≤ <i>l</i> ≤ 13
Final R indices $[I > 2\sigma(I)]^{c}$	<i>R</i> ₁ = 0.0367,	R ₁ = 0.0300,	$R_1 = 0.0296,$	$R_1 = 0.0452,$
	wR ₂ = 0.0869	wR ₂ = 0.0676	wR ₂ = 0.0673	wR ₂ = 0.0943
R indices (all data) ^{c)}	<i>R</i> ₁ = 0.0525,	R ₁ = 0.0397,	$R_1 = 0.0420,$	R ₁ = 0.0708,
	$wR_2 = 0.0943$	$wR_2 = 0.0706$	wR ₂ = 0.0715	$wR_2 = 0.1033$
Largest diff. peak/hole (e·Å-3)	0.493 /-0.542	0.380 / -0.240	0.336 /-0.279	0.581 / -0.379
$-1F_{0}^{2}F_{0}^{2}$	F_{1}^{2} , F_{2}^{2} ,			

Table S1. Crystal and structural refinement data of 4a,b, 5 and 6.

^{a)} $R_{\text{int}} = \sum |F_0^2 - F_0^2(\text{mean})| / \sum F_0^2$, where F_0^2 (mean) is the average intensity of symmetry equivalent diffractions. ^{b)} $S = [\sum w (F_0^2 - F_0^2)^2] / (n-p)^{1/2}$, where n = number of reflections, p = number of parameters. ^{c)} $R = [\sum (||F_0| - |F_0|) / \sum |F_0|]$; $R[\sum (w (F_0^2 - F_0^2))^2 / \sum (w F_0^4)]^{1/2}$.

Figure S1. The 1D chains formed by **4b** in the solid state, due to hydrogen bond formation, indicated as dotted lines. All carbon-bonded hydrogen atoms are omitted for clarity. O3···O4 2.820(2) Å, H1O4–O4 0.87(2), O3···H1O4 1.95 (3), O3···H1O4–O4 173.8(19)°. Symmetry code - x + 1, - y, - z + 1.

Figure S2. DSC traces of **4b**,**5**, and **6** under argon (left) (gas flow, 20 mL min⁻¹) and oxygen (right) (gas flow, 20 mL min⁻¹; argon carrier gas flow, 40 mL min⁻¹) (heating rate 10 °C min⁻¹).

Figure S3. PXRD pattern of the TG residues obtained from **4a** under argon, for comparison Cu (ICDD 00-04-0836) Cu and Cu₂O (ICDD 00-005-0667).

Figure S4. PXRD pattern of the TG residues obtained from 4a under oxygen, for comparison CuO (ICDD 01-073-6023).

Figure S5. PXRD pattern of the TG residues obtained from **5** under argon, for comparison Cu (ICDD 00-04-0836) and Cu_2O (ICDD 00-005-0667).

Figure S6. PXRD pattern of the TG residues obtained from 5 under oxygen, for comparison CuO (ICDD 01-073-6023).

Figure S7. PXRD pattern of the TG residues obtained from **6** under argon, for comparison Cu (ICDD 00-04-0836) and Cu_2O (ICDD 00-005-0667).

Figure S8. PXRD pattern of the TG residues obtained from 6 under oxygen, for comparison CuO (ICDD 01-073-6023).

Figure S9. EDX spectra of the films obtained by using **4a** as CVD precursor (layer A) (N_2) (gas flow rate 50 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 450 °C).

Figure S10. EDX spectra of the films obtained by using **4a** as CVD precursor (layer B) (N₂) (gas flow rate 50 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 510 °C).

Figure S11. EDX spectra of the films obtained by using **5** as CVD precursor (layer C) (N_2) (gas flow rate 50 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 450 °C) for comparison.

Figure S12. EDX spectra of the films obtained by using **5** as CVD precursor (layer D) (N_2) (gas flow rate 50 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 510 °C).

Figure S13. EDX spectra of the films obtained by using **4a** as CVD precursor (layer E) (O_2) (gas flow rate 40 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 450 °C) for comparison.

Figure S14. EDX spectra of the films obtained by using **4a** as CVD precursor (layer F) (O_2) (gas flow rate 40 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 510 °C).

Figure S15. EDX spectra of the film obtained by using **5** as CVD precursor (layer H) (O_2) (gas flow rate 40 mL min⁻¹, at 20 keV (left) and 3 keV (right), substrate temperature 510 °C).

Figure S16. Detailed XPS spectra obtained of layer A (applied parameters are given in Table 4) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S17. Detailed XPS spectra of the Cu2p (left) peak, C1s (middle) and O1s (right) obtained of layer A from **4a** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S18. XPS survey spectra obtained of layer B (applied parameters are given in Table 4) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S19. Detailed XPS spectra of the Cu2p (left) peak, C1s (middle) and O1s (right) obtained of layer B from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S20. XPS survey spectra obtained of layer C (applied parameters are given in Table 4) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S21. Detailed XPS spectra of the Cu2p (left) peak, C1s (middle) and O1s (right) obtained of layer C from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S22. XPS survey spectra obtained of layer E (applied parameters are given in Table 4) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S23. Detailed XPS spectra of the Cu2p (left) peak, C1s (middle) and O1s (right) obtained of layer E from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S24. XPS survey spectra obtained of layer F (applied parameters are given in Table 5) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S25. Detailed XPS spectra of the Cu2p (left) peak, C1s (middle) and O1s (right) obtained of layer F from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S26. XPS survey spectra obtained of layer G (applied parameters are given in Table 4) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S27. Detailed XPS spectra of the Cu2p (left) peak C1s (middle) and O1s (right) obtained of layer G from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S28. XPS survey spectra obtained of layer H (applied parameters are given in Table 5) of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S29. Detailed XPS spectra of the Cu2p (left) peak C1s (middle) and O1s (right) obtained of layer H from **5** of the surface and layer after 20 s (200 eV) and 2 min argon ion sputtering (E = 4000 eV).

Figure S30. Detailed XPS spectra of the C1s obtained of layers B and C of the layer after 2 min argon ion sputtering (E = 4000 eV).

Figure S31. PXRD pattern of the layer A (left) from 4a and layer D (right) from 5 CVD (N_2) (applied deposition parameters are given in Table 4).

Figure S32. PXRD pattern of the layer F (left) from 4a and layer H (right) from 5 by CVD (O_2) (applied deposition parameters are given in Table 4).