Modulation of the mechanism of apoptosis in cancer cell lines by treatment with silica-based nanostructured materials functionalized with different metallodrugs.

Diana Díaz-García^a, Diana Cenariu^b, Yolanda Pérez^a, Paula Cruz^a, Isabel del Hierro^a, Sanjiv Prashar^a, Eva Fischer-Fodor^{b,c,*} and Santiago Gómez-Ruiz^{a,*}

^{c.} Tumour Biology Department, The Institute of Oncology "I.Chiricuta", RO-400015, Cluj-Napoca, Romania.

+ *Corresponding authors: S. Gómez-Ruiz, e-mail address: santiago.gomez@urjc.es and E. Fischer-Fodor, e-mail address: fischer.eva@iocn.ro

Supplementary Material

This supplementary material contains: Pore size distribution of SBA-PADOH and **M1–M3**, FT-IR spectra of SBA-PADOH and **M1–M3**, DR-UV spectra of SBA-PADOH and **M1–M3**, particle size distribution of SBA-PADOH and **M1–M3** and additional biological data.

Figure S1. Pore size distribution of SBA-PADOH

^{a.} Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles (Madrid), Spain

^{b.}Medfuture - Research Center for Advanced Medicine, The University of Medicine and Pharmacy "Iuliu Hatieganu", RO-400337, Cluj-Napoca, Romania.

Figure S2. Pore size distribution of M1

Figure S3. Pore size distribution of M2

Figure S4. Pore size distribution of M3

Figure S5.FT-IR spectrum of SBA-PADOH

Figure S6.FT-IR spectrum of M1

Figure S7.FT-IR spectrum of M2

Figure S8.FT-IR spectrum of M3

Figure S9. Comparison of FT-IR spectra of SBA-PADOH, M2 and M3 for the detection of Ti-O band.

Figure S10. Comparison of FT-IR spectra of SBA-PADOH, **M2** and **M3** for the detection of C=C band of Cp ligands.

Figure S11. Comparison of FT-IR spectra of SBA-PADOH and **M1** for the detection of C=C band of Ph ligands.

Figure S12. DR-UV spectra of SBA-PADOH, M1, M2 and M3.

Figure S13.Particle size distribution of SBA-PADOH (*x* axis size in nm, *y* axis number of particles). Left: distribution of particle width; right: distribution of particle length.

Figure S14. Particle size distribution of M1(x axis size in nm, y axis number of particles). Left: distribution of particle width; right: distribution of particle length.

Figure S15. Particle size distribution of M2(x axis size in nm, y axis number of particles). Left: distribution of particle width; right: distribution of particle length.

Figure S16. Particle size distribution of M3(x axis size in nm, y axis number of particles). Left: distribution of particle width; right: distribution of particle length.

Figure S17.Release study of material M1 in simulated body fluid (ppm of Sn released to the medium)

Figure S18.Release study of material **M1** in simulated body fluid (% of loaded Sn released to the medium)

Figure S19.Release study of material M2 and M3 in simulated body fluid (ppm of Ti released to the medium)

Figure S20.Release study of material **M2** and **M3** in simulated body fluid (% of loaded Ti released to the medium)

Figure S21. Reduction of the metabolic rate in DLD-1 colon carcinoma cells after the treatment with SnPh_2Cl_2 , the active compound incorporated in **M1**; TiCp_2Cl_2 , the precursor of **M2** and $\text{TiCpCp}^{\text{PhNf}}\text{Cl}_2$, precursor of **M3**. The linear regression of the fluorescence data measured after 24 hours of incubation indicates a slight, but statistically significant, decrease (p<0.0.5) of the metabolic rate for SnPh_2Cl_2 and $\text{TiCpCp}^{\text{PhNf}}\text{Cl}_2$, while TiCp_2Cl_2 has no significant activity. In SnPh_2Cl_2 the metabolic rate maintains over 85% for every applied concentration, while in $\text{TiCpCp}^{\text{PhNf}}\text{Cl}_2$ this percent is 82.7%.

Figure S22. Metabolic rate reduction in A2780 ovary carcinoma cells treated with with $SnPh_2Cl_2$, $TiCp_2Cl_2$, and $TiCpCp^{PhNf}Cl_2$ alone, without incorporation into **M1-M3**. The linear regression of data indicates significant activity in $SnPh_2Cl_2$ and $TiCpCp^{PhNf}Cl_2$. The metabolic rate maintains over 91% even using the highest concentration.

Figure S23. Metabolic rate reduction in A431 epidermal carcinoma cells treated with with $SnPh_2Cl_2$, $TiCp_2Cl_2$, and $TiCpCp^{PhNf}Cl_2$ alone, without incorporation into **M1-M3**. The metabolica rate reduction was significant only for $SnPh_2Cl_2$, where the 82.3 percent of the cells were still metabolically active after the treatment.

Figure S24. Influence of $SnPh_2Cl_2$, $TiCp_2Cl_2$, and $TiCpCp^{PhNf}Cl_2$ on the level of soluble Fas receptor secreted by DLD-1, A2780 and A431 tumor cells. The same concentration of compounds alone, without being incorporated in SBA-PADOH, does not exhibit any statistically significant influence on Fas receptor (one-way analysis of variances, p<0.05).

Figure S25. Influence of $SnPh_2Cl_2$, $TiCp_2Cl_2$, and $TiCpCp^{PhNf}Cl_2$ on the level of Fas Ligand secreted by DLD-1, A2780 and A431 tumor cells; the protein level was below the detection limit in three samples, and no significant modulation was evidenced using the one-way analysis of variances.

Figure S26. Influence of SnPh₂Cl₂, TiCp₂Cl₂, and TiCpCp^{PhNf}Cl₂ on the tumor necrosis factor alpha (TNF- α) secreted by DLD-1, A2780 and A431 tumor cells. SnPh₂Cl₂, the precursor of **M1** caused a significant increase of TNF- α production (one-way analysis of variance, p<0.05), while the titanocenes exhibited no significant influence in the tumour cell lines.

	Width (nm)	Length (nm)
SBA-PADOH	339±10	603±24
M1	357±10	546±24
M2	377±54	549±17
M3	407±8	604±25