## Supporting Information

## A New Stable Luminescent Cd(II) Metal–Organic Framework with Fluorescent Sensing and Selective Dye Adsorption Properties

Wen-Quan Tong, Wei-Ni Liu, Jian-Guo Cheng, Peng-Feng Zhang, Gao-peng Li, Lei Hou\* and Yao-Yu Wang\* Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China. E-mail: wyaoyu@nwu.edu.cn. lhou2009@nwu.edu.cn.

| 1                   |           |                      |           |
|---------------------|-----------|----------------------|-----------|
| Cd(1)-O(18)         | 2.172(10) | Cd(3)-O(3)#5         | 2.308(9)  |
| Cd(1)-O(12)#1       | 2.223(9)  | Cd(3)-O(7)           | 2.336(8)  |
| Cd(1)-O(19)         | 2.290(13) | Cd(3)-O(9)           | 2.374(8)  |
| Cd(1)-O(17)         | 2.321(13) | Cd(3)-O(4)#5         | 2.463(8)  |
| Cd(1)-O(15)         | 2.336(9)  | Cd(3)-O(8)           | 2.561(12) |
| Cd(1)-O(16)         | 2.388(9)  | Cd(2)#3-O(5)         | 2.300(8)  |
| Cd(2)-O(5)#2        | 2.299(8)  | Cd(2)#2-O(13)        | 2.420(8)  |
| Cd(2)-O(14)#3       | 2.324(8)  | Cd(2)#2-O(14)        | 2.323(8)  |
| Cd(2)-O(9)          | 2.409(8)  | Cd(3)#5-O(11)        | 2.295(9)  |
| Cd(2)-O(13)#3       | 2.421(8)  | Cd(3)#4-O(4)         | 2.463(8)  |
| Cd(2)-O(7)          | 2.426(9)  | Cd(3)#4-O(3)         | 2.309(9)  |
| Cd(2)-O(10)         | 2.427(9)  | Cd(1)#6-O(12)        | 2.222(9)  |
| Cd(3)-O(11)#4       | 2.295(9)  | Cd(2)-N(1)#2         | 2.326(9)  |
| N(1)-Cd(2)#3        | 2.326(9)  | Cd(3)-N(4)#4         | 2.361(9)  |
| O(18)-Cd(1)-O(19)   | 90.5(5)   | N(4)-Cd(3)#5         | 2.361(9)  |
| O(12)#1-Cd(1)-O(19) | 83.9(6)   | O(18)-Cd(1)-O(12)#1  | 131.8(4)  |
| O(18)-Cd(1)-O(17)   | 94.1(5)   | O(9)-Cd(2)-O(7)      | 76.9(3)   |
| O(12)#1-Cd(1)-O(17) | 88.4(5)   | O(13)#3-Cd(2)-O(7)   | 90.4(3)   |
| O(19)-Cd(1)-O(17)   | 172.3(5)  | O(5)#2-Cd(2)-O(10)   | 130.8(3)  |
| O(18)-Cd(1)-O(15)   | 80.3(3)   | O(14)#3-Cd(2)-O(10)  | 78.8(3)   |
| O(12)#1-Cd(1)-O(15) | 146.8(3)  | O(9)-Cd(2)-O(10)     | 53.3(3)   |
| O(19)-Cd(1)-O(15)   | 88.5(5)   | O(13)#3-Cd(2)-O(10)  | 131.3(3)  |
| O(17)-Cd(1)-O(15)   | 98.4(4)   | O(7)-Cd(2)-O(10)     | 102.5(3)  |
| O(18)-Cd(1)-O(16)   | 136.6(4)  | O(11)#4-Cd(3)-O(3)#5 | 144.6(3)  |

Table S1. Selected bond lengths [Å] and angles [°] for complex 1.

| O(12)#1-Cd(1)-O(16)   | 90.8(3)  | O(11)#4-Cd(3)-O(7)   | 92.3(3)  |
|-----------------------|----------|----------------------|----------|
| O(19)-Cd(1)-O(16)     | 85.8(4)  | O(3)#5-Cd(3)-O(7)    | 122.9(3) |
| O(17)-Cd(1)-O(16)     | 95.0(5)  | O(11)#4-Cd(3)-O(9)   | 94.0(3)  |
| O(15)-Cd(1)-O(16)     | 56.3(3)  | O(3)#5-Cd(3)-O(9)    | 96.0(3)  |
| O(5)#2-Cd(2)-O(14)#3  | 147.8(3) | O(7)-Cd(3)-O(9)      | 79.3(3)  |
| O(5)#2-Cd(2)-O(9)     | 89.2(3)  | O(11)#4-Cd(3)-O(4)#5 | 91.3(3)  |
| O(14)#3-Cd(2)-O(9)    | 122.5(3) | O(3)#5-Cd(3)-O(4)#5  | 54.9(3)  |
| O(5)#2-Cd(2)-O(13)#3  | 92.6(3)  | O(7)-Cd(3)-O(4)#5    | 169.3(3) |
| O(14)#3-Cd(2)-O(13)#3 | 55.2(3)  | O(9)-Cd(3)-O(4)#5    | 90.3(3)  |
| O(9)-Cd(2)-O(13)#3    | 167.3(3) | O(11)#4-Cd(3)-O(8)   | 134.4(4) |
| O(5)#2-Cd(2)-O(7)     | 97.2(3)  | O(3)#5-Cd(3)-O(8)    | 75.1(3)  |
| O(14)#3-Cd(2)-O(7)    | 86.0(3)  | O(7)-Cd(3)-O(8)      | 52.3(3)  |
| O(4)#5-Cd(3)-O(8)     | 129.2(3) | O(9)-Cd(3)-O(8)      | 104.3(4) |

Symmetry transformations used to generate equivalent atoms: #1: x+1/2,-y+1/2,z+1/2; #2: -x+3/2,y-1/2,-z+1/2; #3:

-x+3/2,y+1/2,-z+1/2; #4: -x+1/2,y+1/2,-z+1/2; #5:-x+1/2,y-1/2,-z+1/2; #6: x-1/2,-y+1/2,z-1/2.

| Table S2 Standard Deviation | (δ | ) calculation for the detection of $Fe^{3+}$ for | or 1. |
|-----------------------------|----|--------------------------------------------------|-------|
|-----------------------------|----|--------------------------------------------------|-------|

| Test                   | Fluorescence intensity (nm) |
|------------------------|-----------------------------|
| 1                      | 5408.519                    |
| 2                      | 5407.993                    |
| 3                      | 5407.633                    |
| 4                      | 5408.235                    |
| 5                      | 5408.432                    |
| 6                      | 5407.855                    |
| 7                      | 5407.944                    |
| 8                      | 5407.732                    |
| 9                      | 5408.439                    |
| 10                     | 5408.365                    |
| average                | 5408.115                    |
| Standard deviation (δ) | 0.315                       |

**Table S3** Standard Deviation ( $\delta$ ) calculation for the detection of  $CrO_4^{2-}$  for **1**.

| Test                   | Fluorescence intensity (nm) |
|------------------------|-----------------------------|
| 1                      | 5697.787                    |
| 2                      | 5696.832                    |
| 3                      | 5696.914                    |
| 4                      | 5696.798                    |
| 5                      | 5697.564                    |
| 6                      | 5697.643                    |
| 7                      | 5696.994                    |
| 8                      | 5697.441                    |
| 9                      | 5697.742                    |
| 10                     | 5697.698                    |
| average                | 5697.341                    |
| Standard deviation (δ) | 0.408                       |

| Test                   | Fluorescence intensity (nm) |
|------------------------|-----------------------------|
| 1                      | 7681.412                    |
| 2                      | 7682.102                    |
| 3                      | 7682.094                    |
| 4                      | 7682.111                    |
| 5                      | 7681.564                    |
| 6                      | 7681.643                    |
| 7                      | 7682.204                    |
| 8                      | 7681.441                    |
| 9                      | 7681.742                    |
| 10                     | 7681.698                    |
| average                | 7681.801                    |
| Standard deviation (δ) | 0.901                       |

Table S4 Standard Deviation ( $\delta$ ) calculation for the detection of  $Cr_2O_7^{2-}$  for 1.



**Fig. S1** Coordination arrangement of Cd<sup>2+</sup>1 (a) and Cd<sup>2+</sup>2, Cd<sup>2+</sup>3 (b) ions could be described as a distorted pentagonal bipyramid.



Fig. S2 PXRD patterns of complex 1 simulated from the X-ray single-crystal data and assynthesized products.



Fig. S4 PXRD patterns of 1 immersed in water at room temperature for one month.



Fig. S5 The FT-IR spectra of complex 1.



**(a)** 



**(b)** 

**Fig. S6** (a) Pictures of different Mn<sup>+</sup>@1 solutions (M = Cu<sup>2+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Co<sup>2+</sup>, Ca<sup>2+</sup>, Zn<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ni<sup>2+</sup>, Ag<sup>+</sup> and Fe<sup>3+</sup> respectively ); (b) Pictures of different 1@A<sup>n-</sup> solutions (A = Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>, CrO<sub>4</sub><sup>2-</sup>, HSO<sub>4</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, Br<sup>-</sup>, Cl<sup>-</sup>, I<sup>-</sup>, C<sub>2</sub>O<sub>4</sub><sup>2-</sup> and SO<sub>4</sub><sup>2-</sup> respectively).



**Figure S7** The linear correlation for the plot of  $I_0/I$  vs concentration of Fe<sup>3+</sup> (a), Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> (b) and CrO<sub>4</sub><sup>2-</sup> (c) ions, respectively, in low concentration range.



(c)  $CrO_4^{2-}$ 

Fig. S8 Quenching efficiency defined by the Stern–Volmer relationship for  $Fe^{3+}$ ,  $Cr_2O_7^{2-}$  and  $CrO_4^{2-}$  ions.



Fig. S9 Luminescence intensity at 406 nm of 1 dispersed in water with addition of different mixed ions (10<sup>-2</sup>M) mixed solution added Fe<sup>3+</sup> ions (10<sup>-2</sup> M) (m1: Ag<sup>2+</sup>/Pb<sup>2+</sup>; m2: Cu<sup>+</sup>/K<sup>+</sup>/Mg<sup>2+</sup>; m3: Al<sup>3+</sup>/Cd<sup>2+</sup>/Ca<sup>2+</sup>/Co<sup>2+</sup>; m4: Na<sup>+</sup>/Ni<sup>2+</sup>/Zn<sup>2+</sup>).



Fig. S10 Luminescent intensity at 406 nm of 1 after five recycles in  $Fe^{3+}$ ,  $CrO_4^{2-}$  and  $Cr_2O_7^{2-}$  solutions (10<sup>-2</sup> M).



Fig. S11 The PXRD patterns of 1 treated by  $Fe^{3+}$ ,  $CrO_4^{2-}$  and  $Cr_2O_7^{2-}$  aqueous solutions.

| Sample                                                                             | Concentration of Cd <sup>2+</sup> (ug/mL) |
|------------------------------------------------------------------------------------|-------------------------------------------|
| Blank sample (H <sub>2</sub> O)                                                    | 0.0196                                    |
| Initial solution after immersing in H <sub>2</sub> O                               | 0.0228                                    |
| Final solution after recycle sensing experiment for Fe <sup>3+</sup>               | 0.0212                                    |
| Final solution after recycle sensing experiment for CrO <sub>4</sub> <sup>2-</sup> | 0.0201                                    |
| Final solution after recycle sensing experiment for $Cr_2O_7^{2-}$                 | 0.0199                                    |

Fig. S12 ICP experiments of 1 after immersing in different solution.



Fig. S13 UV-Vis adsorption spectrum of  $M(NO_3)_n$  aqueous solution and the excitation spectrum of 1.



Fig. S14 UV-Vis adsorption spectrum of  $K_n(A)$  aqueous solution and the excitation spectrum of 1.



**(b)** 

Fig. S15 Selective adsorption of CR with addition of 1 before (a) and after (b).



Fig. S16 PXRD powder diffraction patterns of 1 after dye experiment.