Electronic Supplementary Information

Ultrathin CsPbX₃ (X=Cl, Br, I) nanoplatelets: solvothermal synthesis and optical spectroscopic properties

Daqin Chen,^{*,a,b} Xiao Chen,^a Junni Li,^a Xinyue Li^a and Jiasong Zhong^a

^{*a.*} College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, P. R. China.

^{b.} College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China.

E-Mail: dqchen@fjnu.edu.cn

	FWHM (nm)								
	CsPbCl ₃	$CsPbCl_{1.5}Br_{1.5}$	CsPbClBr ₂	CsPbBr ₃	$CsPbBr_{1.5}I_{1.5}$	CsPbBrl ₂	CsPbl₃		
AE	19.4	22.8	23.4	26.2	32.7	49.3	56.3		
SR	24.2	30.0	29.5	26.2	44.4	56.8	69.9		

Table S1 Comparison of FWHMs for two kinds of CsPbX₃ NPLs: one is prepared from anion exchange (**AE**) using CsPbBr₃ NPLs as the precursor and the other is directly fabricated via solvothermal reaction (**SR**).

Table S2 The evaluated PL lifetimes of exciton recombination for ultrathin $CsPbX_3$ (X=Cl, Cl/Br, Br, Br/I, I) NPLs and thick $CsPbX_3$ NPLs.

	Lifetime (ns)								
	CsPbCl ₃	CsPb(Cl/Br) ₃	CsPbBr ₃	CsPb(Br/I) ₃	CsPbI₃				
Ultrathin NPLs	0.37	1.00	2.67	4.76	8.40				
Thick NPLs	2.76	3.28	5.79	30.08	62.08				

* The decay lifetimes are determined via the equation of $\tau = \int I(t)dt / I_0$, where I(t) is the time-related luminescence intensity and I_0 is the peak intensity.

Figure S1 High-resolution TEM (HRTEM) micrographs of ultrathin CsPbBr₃ NPLs in lateral view: (a) high magnification, (b) low magnification.

Figure S2 TEM images of thick $CsPbBr_3$ NPLs: (a) in top view, demonstrating that the length and width of the obtained NPLs are in the range of 100~200 nm, (b) in lateral view, revealing that the thickness is about 10 nm.

Figure S3 Optical absorption and emission spectra of ultrathin $CsPbBr_3 NPLs$ and thick $CsPbBr_3 NPLs$.

Figure S4 XRD patterns of ultrathin CsPbBr₃ NPLs and thick CsPbBr₃ NPLs. Bars represent standard diffraction data of monoclinic CsPbBr₃ crystal (JCPDS No. 18-0364).

Figure S5 A stepwise anion exchange strategy to prepare CsPbX₃ NPLs using CsPbBr₃ NPLs as the precursor. CsPbBr₃ NPLs toluene solution was divided into several parts. After anion exchange, one part was remained for characterization, the rest for further halogen exchange.

Figure S6 (a) PL spectra for ultrathin CsPbX₃ NPLs prepared from anion exchange using CsPbBr₃ NPLs as the precursor. (b) PL spectra for CsPbX₃ NPLs directly fabricated via solvothermal reaction. The related FWHM values are tabulated in *Table S1*.

Figure S7 TEM image of CsPbCl₃ NPLs prepared from anion exchange using CsPbBr₃ NPLs as the precursor.

Figure S8 TEM image of CsPb(Cl/Br)₃ NPLs prepared from anion exchange using CsPbBr₃ NPLs as the precursor.

Figure S9 TEM image of CsPbI₃ NPLs prepared from anion exchange using CsPbBr₃ NPLs as the precursor.

Figure S10 Quantitative excitation and emission spectra (λ_{ex} =365 nm) of the CsPbBr₃ NPLs and the reference recorded by a spectrofluoremeter equipped with an integrating sphere for PLQY measurement.

Figure S11 Comparison of FWHM values for the $CsPbX_3$ NPLs prepared by anion exchange and solvothermal reaction, respectively.

Figure S12 XRD patterns of thick $CsPbX_3$ NPLs prepared from anion exchange.

Figure S13 PL decay curves of exciton recombination for thick CsPbX₃ (X=Cl, Cl/Br, Br, Br/I, I) NPLs. The decay lifetimes for ultrathin CsPbX₃ NPLs and thick CsPbX₃ NPLs are tabulated in *Table S2*.