Electronic Supplementary Information (ESI) for

Mn₁₃-clusters based coordination polymer as co-catalyst of CdS for enhanced visible-light driven H₂ evolution

Tian Wen^a, Lei Zhang^{a*} and Wolfgang Schmitt^b

^aSchool of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.

E-mail: lei.zhang1@unimelb.edu.au

^bSchool of Chemistry & CRANN, University of Dublin, Trinity College, Dublin 2, Ireland.

Part I: Experimental Section

1. The synthesis of CdS nanoparticles (CdS NPs)

CdS NPs were prepared by a precipitation-hydrothermal method. Firstly, 0.5 g $Cd(Ac)_2 \cdot 2H_2O$ was added into 10 ml deionized water followed by stirring for 2 hours. Secondly, 3 ml 0.49 M Na₂S aqueous solution was added into the salts solution at the same time, followed by stirring for 3 hours. Finally, the mixed suspension was transferred to a 23 ml Teflon-lined autoclave and kept at 180 °C for 10 hours. The final products were washed by deionized water and ethanol for three times, respectively, and dried at 60 °C for 24 hours.

2. The synthesis of Mn₁₃-polymer

A mixture of $MnCl_2.4H_2O$ (0.197g), $KMnO_4$ (0.033g), *tert*-butylphosphonate acid (0.140g), 4,4'-trimethylenedipyridine (4,4-TDP) (0.303 g) and CH_3OH (40 mL) was stirred at room temperature for 5 h. The filtrate was remained at room temperature after the solution was filtered. The CH_3OH naturally evaporated, and the crimson Mn_{13} -polymer crystals were formed after two weeks.

3. The synthesis of Mn₁₃-polymer/CdS

 Mn_{13} -polymer/CdS was synthesized by mechanically mixing Mn_{13} -polymer with the CdS NPs in a mortar inside a glovebox filled with Argon gas. For example, 20 mg of as-synthesized CdS NPs were added into the mortar, followed by addition of 0.5 mg Mn_{13} -polymer (2.4 wt%). Then the mixture was mechanically ground inside the glovebox until the final products transformed into the fine powders. In the same way, the nominal weight ratios of Mn_{13} -polymer to CdS were 4.5, 7.0, 9.0 and 11.0 wt%, respectively.

4. Photocatalytic H₂ production test

The photocatalytic H₂-production reactions were performed in a 100 ml Pyrex flask with a white-light emitting-diode (LED) working as the light source with a UV-cutoff filter (\geq 420 nm) and using Mn₁₃-polymer/CdS as catalyst at room temperature, along with triethanolamine aqueous solution 80 ml (TEOA 16 vol.%) as an electron donor. Then Argon gas was purged into the dispersion of photocatalyst for 20 mins to eliminate the air and keep the reactor under anaerobic conditions. After photocatalytic H₂ production, 0.2 ml gas was pumped intermittently by injection syringe, and the produced H2 was tested by gas chromatograph.

5. Electrochemical and photoelectrochemical tests

The polarization curves were carried out in a standard three-electrode system in 0.5M Na₂SO₄ aqueous solution, using the as-prepared samples as the working electrode, Ag/AgCl (saturated KCl) as a reference electrode, and the Pt wire as the counterelectrode. The current frequency is 1200 Hz. The EIS measurements were tested in the same condition over a range from 1 to 2×10^5 Hz with an AC. For the TCP experiment, the light source was a 300 W Xenon light with a UV-cutoff filter (\geq 420 nm) under the conditions of 0.2 M Na₂S and 0.04 M Na₂SO₃ mixed aqueous solution.

Part II: Additional Figures

Figure S1. The PXRD patterns of obtained fresh Mn_{13} -polymer (upper); and pure Mn_{13} -polymer samples after 9h photocatalytic test under the corresponding experimental conditions (lower), suggesting the co-catalyst should be stable even under visible light illumination.

Figure S2. The packing model of Mn_{13} -polymer to highlight the CH₃OH molecules inside the channels.

Figure S3. The typical TEM (a-b) and SAED (c) image of CdS nanoparticls.

Figure S4. The XRD patterns of Mn₁₃-polymer/CdS(red line) and CdS (black line).

Figure S5. EDX of Mn₁₃-polymer/CdS.

Figure S6. The UV-Vis diffuse reflectance spectra of Mn_{13} -polymer, CdS and Mn_{13} -polymer/CdS. The a, b, c, d, and e on behalf of the different amount Mn_{13} -polymer loading of 2.4, 4.5, 7.0, 9.0 and 11.0 wt%, respectively.

Figure S7. The XPS spectra of Cd 3d of CdS and Mn₁₃-polymer/CdS.

Figure S8. The XPS spectra of S_{2p} of CdS and Mn_{13} -polymer/CdS.

Figure S9. The N_2 sorption isotherms of CdS and Mn_{13} -polymer/CdS.

Figure S10. The FT-IR spectrum of the obtained crystals of Mn_{13} -polymer.