## **Electronic Supplementary Information**

# A facile synthesis for $BeCl_2$ , $BeBr_2$ and $BeI_2$

Matthias Müller, Florian Pielnhofer and Magnus R. Buchner\*

#### Powder X-ray diffraction

Powder X-ray diffraction was performed with a STOE StadiMP powder diffractometer using Cu-K $\alpha_1$  radiation, a Ge monochromator and a Mythen1K detector. Samples were prepared under glovebox atmosphere in Lindemann capillaries of fused silica, which were flame sealed.

#### **RIETVELD** refinement

Phase analysis was performed with WinXPOW,<sup>1</sup> profiles were fitted with JANA2006.<sup>2</sup> RIETVELD refinement was carried out with JANA2006 using single crystal data from the literature.<sup>3–5</sup>

#### IR spectroscopy

The IR spectra were recorded on a BRUKER Alpha II spectrometer with diamond ATR module inside an argon filled glovebox. Processing of the spectra was performed with the OPUS<sup>6</sup> software package and OriginPro8.<sup>7</sup>

#### Raman spectroscopy

For the Raman spectroscopic measurements a small amount of the respective beryllium halide was collected and flames sealed in boro silicate capillaries with an inner diameter of 0.5 mm. Raman spectra were recorded on a RENISHAW inVia Qontor spectrometer at laser wavelengths of 457 nm, 532 nm, 633 nm and 785 nm and on a RENISHAW inVia Raman microscope at a laser wavelength of 785 nm

#### DFT calculations

All DFT calculations were carried out with the CRYSTAL14 program package using the PBE+D2 method. The *k*-mesh sampling was 8 x 8 for all studied compounds and the convergence criterion was set to  $10^{-8}$  Hartree. The applied Basis sets were taken from  $^{8-11}$ . For the evaluation of the Coulomb and Exchange integrals (TOLINTEG), tolerance factors of 8 8 8 8 and 16 were used. After all full structural optimization including all lattice and atomic site parameters, the IR and Raman active vibrational modes including intensities were calculated. No imaginary frequencies were obtained.



Fig. 1 X-ray powder diffractograms with LeBail profile fit, difference plot and related reference for a) BeCl<sub>2</sub><sup>3,4</sup>, b) BeBr<sub>2</sub><sup>5</sup> and c) Bel<sub>2</sub><sup>5</sup>.



Fig. 2  $BeCl_2$  prior to fractionated sublimation.



Fig. 3 Unknown lint in the lower part of the ampoule in which  ${\rm BeCl}_2$  was synthesised.



Fig. 4  $BeBr_2$  crystals after sublimation.



Fig. 5 Crystals of  $\mathsf{Bel}_2$  at the flame sealed end of the reaction ampule.

| Еx | perimental | and          | calculated       | IR                          | and                            | Raman                              | data                                     | for                                           | BeF <sub>2</sub>                                  | , BeCl <sub>2</sub>                                                | , BeBr                                                                                 | and                                                                                                        | Bel                                                                                                            | 2.                                                                                                                 |
|----|------------|--------------|------------------|-----------------------------|--------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|    | Ex         | Experimental | Experimental and | Experimental and calculated | Experimental and calculated IR | Experimental and calculated IR and | Experimental and calculated IR and Raman | Experimental and calculated IR and Raman data | Experimental and calculated IR and Raman data for | Experimental and calculated IR and Raman data for BeF <sub>2</sub> | Experimental and calculated IR and Raman data for BeF <sub>2</sub> , BeCl <sub>2</sub> | Experimental and calculated IR and Raman data for BeF <sub>2</sub> , BeCl <sub>2</sub> , BeBr <sub>2</sub> | Experimental and calculated IR and Raman data for BeF <sub>2</sub> , BeCl <sub>2</sub> , BeBr <sub>2</sub> and | Experimental and calculated IR and Raman data for BeF <sub>2</sub> , BeCl <sub>2</sub> , BeBr <sub>2</sub> and Bel |

| $\alpha - \beta - BeF_2$ |                            | $\alpha - \beta - BeCl$ | 2                                       | $\alpha$ -BeBr <sub>2</sub> |                          | $\beta$ -BeI <sub>2</sub> |                                                          |
|--------------------------|----------------------------|-------------------------|-----------------------------------------|-----------------------------|--------------------------|---------------------------|----------------------------------------------------------|
|                          |                            | IR d                    | ata / cm <sup>-1</sup> ; experiment (ca | alculated) [mo              | de]                      | , 2                       |                                                          |
| 403                      | (β: 380) [E <sub>1</sub> ] | 450                     | $(\alpha: 449) [B_{1u}]$                | 404                         | $(400) [B_{1u}]$         | 450                       | $(462)[E_u]$                                             |
|                          | (α: 388) [E]               |                         | $(\beta: 451) [A_{2u}]$                 | 416                         |                          | 516                       |                                                          |
|                          | (β: 393) [A <sub>2</sub> ] |                         | $(\beta: 462) [E_u]$                    | 462                         | (492) [B <sub>2u</sub> ] | 581                       |                                                          |
|                          | (α: 412) [A <sub>2</sub> ] | 583                     | $(\alpha:560) [B_{3u}]$                 | 477                         | (505) [B <sub>3u</sub> ] |                           |                                                          |
| 734                      | (α: 745) [A <sub>2</sub> ] |                         | (β: 563) [Eu]                           |                             |                          |                           |                                                          |
|                          | (α: 747) [E]               |                         | (β: 563) [Eu]                           |                             |                          |                           |                                                          |
|                          | (β: 754) [E <sub>1</sub> ] |                         | (β: 569) [A <sub>2u</sub> ]             |                             |                          |                           |                                                          |
|                          | (β: 756) [A <sub>2</sub> ] |                         | $(\alpha: 572) [B_{2u}]$                |                             |                          |                           |                                                          |
|                          |                            | Rama                    | n data / cm $^{-1}$ ; experiment        | (calculated) [r             | node]                    |                           |                                                          |
|                          |                            | 174                     | $(\alpha: 169) [B_{3g}]$                | 94                          | (99) [A <sub>g</sub> ]   | 76                        | (66) $[A_{1g}]$                                          |
|                          |                            |                         | $(\alpha: 175) [B_{2g}]$                | 112                         | $(111) [B_{2g}]$         |                           | (68) $[B_{1g}]$                                          |
|                          |                            | 290                     | $(\beta: 292) [A_{1g}]$                 |                             | $(114) [B_{3g}]$         |                           | (72) $[E_g]$                                             |
|                          |                            | 337                     | (α: 334) [Ag]                           | 168                         | $(175) [B_{1g}]$         |                           | (74) $[B_{2g}]$                                          |
|                          |                            | 410                     | $(\alpha: 385) [B_{3g}]$                | 203                         | (203) $[A_g]$            |                           | (76) $[A_{1g}]$                                          |
|                          |                            | 416                     | $(\alpha: 388) [B_{2g}]$                | 374                         | (362) $[B_{3g}]$         | 92                        | (85) $[E_g]$                                             |
|                          |                            |                         |                                         | 585                         | (606) $[B_{1g}]$         |                           | (88) $[B_{2g}]$                                          |
|                          |                            |                         |                                         |                             |                          |                           | (92) $[E_g]$                                             |
|                          |                            |                         |                                         |                             |                          | 109                       | (102) [Eg]                                               |
|                          |                            |                         |                                         |                             |                          |                           | $(103) [B_{1g}]$                                         |
|                          |                            |                         |                                         |                             |                          |                           | $(109) [B_{2g}]$                                         |
|                          |                            |                         |                                         |                             |                          |                           | $(111) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          |                           | $(112) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          | 101                       | $(118) [A_{1g}]$                                         |
|                          |                            |                         |                                         |                             |                          | 131                       | $(132) [B_{1g}]$                                         |
|                          |                            |                         |                                         |                             |                          |                           | $(130) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          | 140                       | $(143) [A_{1g}]$                                         |
|                          |                            |                         |                                         |                             |                          | 140                       | $(147) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          | 260                       | $(146) [D_{2g}]$                                         |
|                          |                            |                         |                                         |                             |                          | 300                       | $(350) [D_{2g}]$                                         |
|                          |                            |                         |                                         |                             |                          | 420                       | $(331) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          | 430                       | $(410) [E_g]$                                            |
|                          |                            |                         |                                         |                             |                          | 4473                      | $(441) [D_{2g}]$<br>(485) [ $\Delta$ ]                   |
|                          |                            |                         |                                         |                             |                          | 7/5                       | $(486) [B_{-}]$                                          |
|                          |                            |                         |                                         |                             |                          |                           | (401) [B, ]                                              |
|                          |                            |                         |                                         |                             |                          |                           | $(\forall j \downarrow j \downarrow J \downarrow D]_{g}$ |

## Table 2 Calculated IR and Raman vibrational modes for ${\rm BeF}_2.$

| $\alpha$ –BeF <sub>2</sub> , IR active modes   |                            |                                  |
|------------------------------------------------|----------------------------|----------------------------------|
| wavenumber / cm <sup>-1</sup>                  | irreducible representation | intensity / km mol <sup>-1</sup> |
| 90                                             | E                          | 0                                |
| 187                                            | E                          | 0                                |
| 280                                            | A <sub>2</sub>             | 16                               |
| 302                                            | E                          | 3                                |
| 388                                            | E                          | 303                              |
| 412                                            | A <sub>2</sub>             | 181                              |
| 596                                            | E                          | 3                                |
| 745                                            | A <sub>2</sub>             | 1354                             |
| 747                                            | E                          | 2645                             |
| 793                                            | E                          | 3                                |
| 831                                            | A <sub>2</sub>             | 6                                |
| 866                                            | Ē                          | 53                               |
| $\alpha$ -BeF. Baman active modes              |                            |                                  |
| wavenumber / $cm^{-1}$                         | irreducible representation | intensity / a 11                 |
| 90                                             | F                          | 01                               |
| 130                                            | Δ.                         | 262                              |
| 197                                            | A]<br>E                    | 202<br>A7                        |
| 302                                            | E                          | 72                               |
| 302                                            | Δ.                         | 1000                             |
| 317                                            |                            | 621                              |
| 388                                            | A]<br>E                    | 172                              |
| 506                                            | E                          | 62                               |
| 746                                            | Δ.                         | 02                               |
| 740                                            | A]<br>E                    | 33<br>49                         |
| 747                                            | E                          | 42<br>2                          |
| 795<br>866                                     | E                          | 5<br>21                          |
|                                                | L                          | 51                               |
| $\beta$ -BeF <sub>2</sub> , IR active modes    |                            |                                  |
| wavenumber / cm <sup>-1</sup>                  | irreducible representation | intensity / km mol <sup>-1</sup> |
| 66                                             | E1                         | 0                                |
| 380                                            | $E_1$                      | 321                              |
| 393                                            | A <sub>2</sub>             | 228                              |
| 754                                            | $E_1$                      | 2714                             |
| 756                                            | A <sub>2</sub>             | 1352                             |
| 792                                            | E <sub>1</sub>             | 0                                |
| $\beta$ –BeF <sub>2</sub> , Raman active modes |                            |                                  |
| wavenumber / cm <sup>-1</sup>                  | irreducible representation | intensity / a.u.                 |
| 66                                             | E1                         | 58                               |
| 180                                            | E <sub>2</sub>             | 30                               |
| 295                                            | E <sub>2</sub>             | 16                               |
| 316                                            | A <sub>1</sub>             | 1000                             |
| 380                                            | E1                         | 101                              |
| 602                                            | E <sub>2</sub>             | 58                               |
| 754                                            | E <sub>1</sub>             | 14                               |
| 792                                            | E <sub>1</sub>             | 3                                |
| 875                                            | E <sub>2</sub>             | 6                                |
|                                                |                            |                                  |

| Table 3 Calculated IR and Raman vibrational modes for $\alpha$ -BeCl | 2. |
|----------------------------------------------------------------------|----|
|----------------------------------------------------------------------|----|

| $\alpha$ -BeCl <sub>2</sub> , IR active modes    |                            |                                  |
|--------------------------------------------------|----------------------------|----------------------------------|
| wavenumber / cm <sup>-1</sup>                    | irreducible representation | intensity / km mol <sup>-1</sup> |
| 170                                              | $B_{2u}$                   | 0                                |
| 170                                              | $B_{3u}$                   | 0                                |
| 449                                              | $B_{1u}$                   | 1228                             |
| 560                                              | $B_{3u}$                   | 402                              |
| 572                                              | $B_{2u}$                   | 385                              |
| $\alpha$ -BeCl <sub>2</sub> , Raman active modes |                            |                                  |
| wavenumber / cm <sup>-1</sup>                    | irreducible representation | intensity / a.u.                 |
| 62                                               | B <sub>1g</sub>            | 0                                |
| 150                                              | Ag                         | 276                              |
| 169                                              | $B_{3g}$                   | 189                              |
| 175                                              | $B_{2g}$                   | 201                              |
| 293                                              | $B_{1g}$                   | 355                              |
| 334                                              | Ag                         | 1000                             |
| 385                                              | $B_{3g}$                   | 71                               |
| 388                                              | $B_{2g}$                   | 60                               |
| 684                                              | $B_{1g}$                   | 38                               |

#### **Table 4** Calculated IR and Raman vibrational modes for $\beta$ -BeCl<sub>2</sub>.

|   | p – BeCl <sub>2</sub> , IR active modes                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | wavenumber / cm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | irreducible representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | intensity / km mol <sup><math>-1</math></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _ | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E <sub>u</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>Е.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>–</u> u<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - | B-BeCla Raman active modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _ | p been, reaman active modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | innederalle annual i si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | intensity / a st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _ | wavenumber / cm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | irreducible representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | intensity / a.u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $B_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ĕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۸ <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 80<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 80<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alg<br>Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 80<br>81<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c}       A_{1g} \\       E_{g} \\       E_{g} \\       E_{g} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80<br>81<br>88<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} A_{1g} \\ E_{g} \\ E_{g} \\ B_{1g} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \Lambda_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>5<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 80<br>81<br>88<br>89<br>109<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} \Lambda_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>5<br>6<br>6<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} \Lambda_{1g} \\ E_{g} \\ E_{g} \\ B_{1g} \\ E_{g} \\ B_{2g} \\ A_{1g} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>5<br>6<br>6<br>0<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_g \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>5<br>6<br>6<br>0<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \Lambda_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ \Lambda_{1g} \\ B_{1g} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>5<br>6<br>6<br>0<br>99<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_{1g} \\ B_{2g} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>5<br>6<br>6<br>0<br>99<br>97<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_{1g} \\ B_{2g} \\ A_{1g} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>5<br>6<br>6<br>99<br>97<br>10<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_{1g} \\ B_{2g} \\ A_{1g} \\ B_{2g} \\ A_{1g} \\ E_g \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>7<br>10<br>52<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                                      | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>97<br>10<br>52<br>118<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_{1g} \\ B_{2g} \\ A_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{1g} \\ E_g \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} A_{1g} \\ E_g \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \\ A_{1g} \\ B_{1g} \\ B_{2g} \\ A_{1g} \\ B_{2g} \\ A_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{1g} \\ E_g \\ B_{2g} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199                                                                                                                                                                                                                                                                                                                                                                                               | $A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{2g}$<br>$A_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                                     | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215                                                                                                                                                                                                                                                                                                                                                                                        | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{$                                                                                                                                                                 | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215                                                                                                                                                                                                                                                                                                                                                                                        | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{2g}$<br>$A_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2$                                                                                                                                                                   | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>77<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216                                                                                                                                                                                                                                                                                                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                               | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226                                                                                                                                                                                                                                                                                                                                                                          | $A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                                         | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228                                                                                                                                                                                                                                                                                                                                                                   | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                              | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232                                                                                                                                                                                                                                                                                                                                                            | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{$                                                                                                                                 | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232<br>245                                                                                                                                                                                                                                                                                                                                                     | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                                    | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232<br>245<br>201                                                                                                                                                                                                                                                                                                                                              | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                                    | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232<br>245<br>291                                                                                                                                                                                                                                                                                                                                              | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                                | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>0<br>7<br>8<br>5<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232<br>245<br>291<br>292                                                                                                                                                                                                                                                                                                                                       | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{1g}$<br>$A_{1g}$<br>$B_{1g}$<br>$A_{1g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>10<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80<br>81<br>88<br>89<br>109<br>123<br>137<br>139<br>142<br>146<br>150<br>175<br>179<br>180<br>199<br>215<br>216<br>226<br>228<br>232<br>245<br>291<br>292<br>296                                                                                                                                                                                                                                                                                                                                | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g$                                                                                                                                                           | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>7<br>8<br>5<br>19<br>1000<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327                                                                                                                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                                    | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>8<br>5<br>19<br>10000<br>41<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330                                                                                                                                                                                     | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{1g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                           | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>10<br>0<br>7<br>85<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430                                                                                                                                                                         | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$A_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                                | 2<br>5<br>6<br>6<br>9<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>0<br>7<br>85<br>19<br>1000<br>41<br>15<br>8<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         432                                                                                                                                                                         | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                               | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>8<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432                                                                                                                                                             | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                           | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>8<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446                                                                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$                                                                                                                              | 2<br>5<br>6<br>6<br>99<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>1000<br>41<br>15<br>8<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         228         232         245         291         292         296         327         330         430         432         446         453                                                                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>E                                                                                                                             | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>5<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462                                                                                                                         | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_$                                                                                                                           | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>118<br>0<br>5<br>8<br>206<br>2<br>152<br>29<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>5<br>8<br>206<br>2<br>15<br>2<br>2<br>15<br>2<br>2<br>9<br>7<br>10<br>5<br>8<br>206<br>2<br>15<br>2<br>2<br>15<br>2<br>2<br>9<br>7<br>10<br>5<br>8<br>206<br>2<br>15<br>2<br>2<br>9<br>9<br>10<br>5<br>8<br>206<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>8<br>206<br>2<br>11<br>8<br>10<br>10<br>5<br>8<br>206<br>2<br>15<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>8<br>2<br>10<br>10<br>5<br>8<br>2<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                          |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555                                                                                                             | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$             | 2<br>5<br>6<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>8<br>20<br>6<br>2<br>15<br>2<br>2<br>15<br>2<br>2<br>9<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>8<br>1<br>9<br>1000<br>41<br>15<br>8<br>5<br>8<br>1<br>19<br>1000<br>7<br>7<br>8<br>5<br>8<br>5<br>8<br>5<br>8<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_$                                                                                                                                             | 2<br>5<br>6<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>20<br>6<br>2<br>15<br>2<br>9<br>9<br>10<br>0<br>7<br>8<br>5<br>8<br>1<br>9<br>9<br>1000<br>4<br>1<br>15<br>8<br>8<br>1<br>9<br>9<br>9<br>7<br>3<br>5<br>8<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559                                                                                                 | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_$                                                                                                                                             | 2<br>5<br>6<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>0<br>5<br>8<br>118<br>0<br>5<br>8<br>20<br>6<br>2<br>152<br>29<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>8<br>1<br>9<br>9<br>9<br>7<br>3<br>5<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         550                                                                         | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                         | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>118<br>0<br>5<br>8<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>9<br>9<br>9<br>9<br>9<br>7<br>3<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560                                                                         | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_$     | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>118<br>0<br>5<br>8<br>206<br>2<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>19<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>4<br>1<br>15<br>8<br>8<br>19<br>1000<br>7<br>8<br>5<br>8<br>5<br>9<br>9<br>7<br>3<br>5<br>5<br>8<br>19<br>10<br>10<br>5<br>2<br>2<br>11<br>10<br>5<br>2<br>2<br>11<br>12<br>2<br>9<br>10<br>10<br>5<br>2<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>2<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>2<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>2<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>8<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>8<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>8<br>5<br>10<br>10<br>5<br>8<br>2<br>15<br>2<br>2<br>9<br>10<br>10<br>5<br>7<br>8<br>5<br>19<br>10<br>10<br>5<br>8<br>5<br>19<br>10<br>10<br>5<br>7<br>8<br>5<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560         565                                                             | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$                                                                                                                                                        | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>118<br>0<br>5<br>2<br>206<br>2<br>152<br>29<br>10<br>0<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>19<br>1000<br>5<br>7<br>8<br>5<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                          |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         228         232         245         291         292         296         327         330         432         446         453         462         555         558         559         560         565         572                                                                         | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$    | 2<br>5<br>6<br>6<br>7<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>10<br>0<br>7<br>85<br>19<br>1000<br>41<br>15<br>8<br>8<br>1<br>1<br>9<br>1000<br>7<br>7<br>85<br>19<br>1000<br>7<br>7<br>85<br>19<br>10<br>1000<br>7<br>7<br>85<br>19<br>10<br>10<br>5<br>7<br>85<br>19<br>10<br>10<br>5<br>8<br>5<br>19<br>10<br>10<br>5<br>7<br>7<br>8<br>5<br>19<br>10<br>10<br>5<br>7<br>8<br>5<br>10<br>5<br>7<br>5<br>8<br>5<br>10<br>10<br>5<br>7<br>5<br>8<br>5<br>10<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5                                                                                                                                                                                                                                                                                                                                   |
|   | 80         81         88         89         109         123         137         139         142         146         150         177         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560         572         593                                                 | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$ | 2<br>5<br>6<br>6<br>9<br>9<br>9<br>9<br>7<br>10<br>5<br>2<br>118<br>0<br>5<br>8<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>8<br>5<br>19<br>1000<br>41<br>15<br>8<br>8<br>19<br>1000<br>41<br>15<br>8<br>8<br>19<br>1000<br>41<br>15<br>8<br>8<br>15<br>2<br>9<br>9<br>7<br>3<br>5<br>5<br>8<br>10<br>10<br>10<br>5<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560         565         572         593         605                         | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$<br>$E_g$       | 2<br>5<br>6<br>6<br>7<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>29<br>10<br>0<br>7<br>85<br>19<br>100<br>0<br>7<br>85<br>19<br>100<br>101<br>152<br>29<br>100<br>0<br>7<br>85<br>19<br>100<br>101<br>153<br>85<br>19<br>100<br>101<br>103<br>103<br>104<br>115<br>152<br>152<br>152<br>152<br>152<br>153<br>154<br>155<br>155<br>155<br>155<br>155<br>155<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         226         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560         565         572         593         605         605         605 | $A_{1g}$<br>$E_g$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{1g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$E_g$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2$                                                                                                                                 | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>1000<br>41<br>15<br>8<br>1<br>9<br>1000<br>41<br>15<br>8<br>1<br>9<br>1000<br>41<br>15<br>8<br>1<br>9<br>1000<br>41<br>15<br>8<br>1<br>1<br>1<br>8<br>1<br>1<br>1<br>5<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 80         81         88         89         109         123         137         139         142         146         150         175         179         180         199         215         216         228         232         245         291         292         296         327         330         430         432         446         453         462         555         558         559         560         565         572         593         605         608         610             | $A_{1g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$A_{1g}$<br>$B_{2g}$<br>$B_{1g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{1g}$<br>$B_{2g}$<br>$E_{g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>$B_{2g}$<br>B                                                                                                                                                             | 2<br>5<br>6<br>6<br>9<br>99<br>97<br>10<br>52<br>118<br>0<br>58<br>206<br>2<br>152<br>29<br>10<br>0<br>7<br>85<br>19<br>1000<br>41<br>15<br>8<br>1<br>1000<br>41<br>15<br>8<br>8<br>1<br>1000<br>41<br>15<br>8<br>8<br>1<br>1000<br>41<br>15<br>8<br>8<br>1<br>1000<br>41<br>15<br>8<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| BeBr <sub>2</sub> , IR active modes    |                            |                                  |
|----------------------------------------|----------------------------|----------------------------------|
| wavenumber / cm <sup>-1</sup>          | irreducible representation | intensity / km mol <sup>-1</sup> |
| 108                                    | B <sub>2u</sub>            | 0                                |
| 109                                    | $B_{3u}$                   | 0                                |
| 400                                    | $B_{1u}$                   | 1160                             |
| 492                                    | $B_{2u}$                   | 349                              |
| 505                                    | $B_{3u}$                   | 347                              |
| BeBr <sub>2</sub> , Raman active modes |                            |                                  |
| wavenumber / cm <sup>-1</sup>          | irreducible representation | intensity / a.u.                 |
| 45                                     | B <sub>1g</sub>            | 0                                |
| 99                                     | Ag                         | 336                              |
| 111                                    | $B_{2g}$                   | 220                              |
| 114                                    | $B_{3g}$                   | 239                              |
| 175                                    | $B_{1g}$                   | 399                              |
| 203                                    | Ag                         | 1000                             |
| 358                                    | $B_{2g}$                   | 215                              |
| 362                                    | B <sub>3g</sub>            | 220                              |
| 606                                    | B <sub>1g</sub>            | 23                               |

Table 5 Calculated IR and Raman vibrational modes for  $\mbox{BeBr}_2.$ 

## Table 6 Calculated IR and Raman vibrational modes for $\alpha-\text{Bel}_2.$

| $\alpha$ –BeI <sub>2</sub> , IR active modes    |                            |                            |
|-------------------------------------------------|----------------------------|----------------------------|
| wavenumber / $cm^{-1}$                          | irreducible representation | intensity / km mol $^{-1}$ |
| 83                                              | B <sub>2u</sub>            | 0                          |
| 87                                              | $B_{3u}$                   | 0                          |
| 365                                             | $B_{1u}$                   | 1181                       |
| 435                                             | $B_{2u}$                   | 360                        |
| 454                                             | B <sub>3u</sub>            | 351                        |
| $\alpha$ -BeI <sub>2</sub> , Raman active modes |                            |                            |
| wavenumber / $cm^{-1}$                          | irreducible representation | intensity / a.u.           |
| 51                                              | B <sub>1g</sub>            | 1                          |
| 82                                              | $B_{2g}$                   | 263                        |
| 87                                              | $A_g$                      | 433                        |
| 88                                              | $B_{3g}$                   | 309                        |
| 119                                             | $B_{1g}$                   | 497                        |
| 147                                             | Ag                         | 1000                       |
| 340                                             | $B_{2g}$                   | 241                        |
| 343                                             | $B_{3g}$                   | 217                        |
| 519                                             | B <sub>1g</sub>            | 20                         |

## **Table 7** Calculated IR and Raman vibrational modes for $\beta$ -Bel<sub>2</sub>.

| $\beta$ -BeI <sub>2</sub> , IR active modes          |                                                                                                                                                                           |                                          |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| wavenumber / cm <sup>-1</sup>                        | irreducible representation                                                                                                                                                | intensity / km mol <sup>-1</sup>         |
| 41                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 47                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 53                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 58                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 68                                                   | $A_{2u}$                                                                                                                                                                  | 0                                        |
| 71                                                   | $A_{2u}$                                                                                                                                                                  | 0                                        |
| 78                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 83                                                   | $A_{2u}$                                                                                                                                                                  | 0                                        |
| 84                                                   | $E_u$                                                                                                                                                                     | 1                                        |
| 93                                                   | $E_u$                                                                                                                                                                     | 0                                        |
| 103                                                  | $E_u$                                                                                                                                                                     | 1                                        |
| 108                                                  | $E_u$                                                                                                                                                                     | 8                                        |
| 109                                                  | $A_{2u}$                                                                                                                                                                  | 6                                        |
| 113                                                  | $E_u$                                                                                                                                                                     | 0                                        |
| 136                                                  | $E_u$                                                                                                                                                                     | 1                                        |
| 148                                                  | $A_{2u}$                                                                                                                                                                  | 0                                        |
| 148                                                  | $E_u$                                                                                                                                                                     | 2                                        |
| 349                                                  | $A_{2u}$                                                                                                                                                                  | 3926                                     |
| 351                                                  | $E_u$                                                                                                                                                                     | 4080                                     |
| 372                                                  | $E_u$                                                                                                                                                                     | 271                                      |
| 376                                                  | $E_u$                                                                                                                                                                     | 28                                       |
| 427                                                  | $E_u$                                                                                                                                                                     | 842                                      |
| 451                                                  | $A_{2u}$                                                                                                                                                                  | 157                                      |
| 456                                                  | $\mathbf{E}_{u}$                                                                                                                                                          | 204                                      |
| 462                                                  | $E_u$                                                                                                                                                                     | 4306                                     |
| 463                                                  | A <sub>2u</sub>                                                                                                                                                           | 1624                                     |
| $\beta$ –BeI <sub>2</sub> , Raman active modes       |                                                                                                                                                                           |                                          |
| wavenumber / cm <sup>-1</sup>                        | irreducible representation                                                                                                                                                | intensity / a.u.                         |
| 29                                                   | E <sub>a</sub>                                                                                                                                                            | 0                                        |
| 37                                                   | $\mathbf{B}_{2g}^{\circ}$                                                                                                                                                 | 1                                        |
| 39                                                   | $E_g$                                                                                                                                                                     | 8                                        |
| 46                                                   | $\tilde{E_g}$                                                                                                                                                             | 0                                        |
| 46                                                   | A <sub>1g</sub>                                                                                                                                                           | 42                                       |
| 53                                                   | $E_g$                                                                                                                                                                     | 8                                        |
| 56                                                   | $E_g$                                                                                                                                                                     | 12                                       |
| 58                                                   | $B_{2g}$                                                                                                                                                                  | 5                                        |
| 59                                                   | $B_{1g}$                                                                                                                                                                  | 7                                        |
| 66                                                   | $A_{1g}$                                                                                                                                                                  | 154                                      |
| 68                                                   | $\mathbf{B}_{1g}$                                                                                                                                                         | 244                                      |
| 72                                                   | $\mathbf{E}_{g}$                                                                                                                                                          | 275                                      |
| 74                                                   | $B_{2g}$                                                                                                                                                                  | 8                                        |
| 76                                                   | $A_{1g}$                                                                                                                                                                  | 93                                       |
| 85                                                   | $B_{1g}$                                                                                                                                                                  | 0                                        |
| 85                                                   | Eg                                                                                                                                                                        | 149                                      |
| 88                                                   | $B_{2g}$                                                                                                                                                                  | 428                                      |
| 93                                                   | E <sub>g</sub>                                                                                                                                                            | 5                                        |
| 102                                                  | E <sub>g</sub>                                                                                                                                                            | 334<br>57                                |
| 103                                                  | $B_{1g}$                                                                                                                                                                  | 5/                                       |
| 109                                                  | $\mathbf{B}_{2g}$                                                                                                                                                         | 19                                       |
| 111                                                  | Eg                                                                                                                                                                        | 1                                        |
| 112                                                  | Eg                                                                                                                                                                        | 13<br>05                                 |
| 120                                                  | $n_{1g}$                                                                                                                                                                  | 52<br>52                                 |
| 134                                                  | D <sub>1g</sub><br>F                                                                                                                                                      | 55<br>100                                |
| 1/2                                                  | Lig<br>A                                                                                                                                                                  | 100                                      |
| 173<br>1 <i>1</i> 7                                  | Alg<br>F                                                                                                                                                                  | 1000                                     |
| 148                                                  | Bo                                                                                                                                                                        | 54                                       |
| 350                                                  | B <sub>2</sub> g                                                                                                                                                          | רד<br>רדי<br>רדי                         |
| 350                                                  | B <sub>2g</sub><br>F                                                                                                                                                      | 176                                      |
| 372                                                  | Eg<br>F                                                                                                                                                                   | 0                                        |
| 375                                                  | Eg                                                                                                                                                                        | 42                                       |
| 379                                                  |                                                                                                                                                                           | 2<br>2                                   |
| 416                                                  | - <b>-</b> 1g                                                                                                                                                             | -<br>65                                  |
| 110                                                  | E_                                                                                                                                                                        |                                          |
| 419                                                  | E <sub>g</sub><br>B <sub>1-</sub>                                                                                                                                         | 0                                        |
| 419<br>441                                           | $E_g$<br>$B_{1g}$<br>$B_{2g}$                                                                                                                                             | 0<br>41                                  |
| 419<br>441<br>447                                    | $ \begin{array}{c} \mathbf{E}_{g}\\ \mathbf{B}_{1g}\\ \mathbf{B}_{2g}\\ \mathbf{E}_{g}\\ \mathbf{E}_{g} \end{array} $                                                     | 0<br>41<br>5                             |
| 419<br>441<br>447<br>458                             |                                                                                                                                                                           | 0<br>0<br>41<br>5<br>8                   |
| 419<br>441<br>447<br>458<br>462                      | $     E_{g} \\     B_{1g} \\     B_{2g} \\     E_{g} \\     A_{1g} \\     B_{1g} $                                                                                        | 0<br>41<br>5<br>8<br>28                  |
| 419<br>441<br>447<br>458<br>462<br>471               |                                                                                                                                                                           | 0<br>41<br>5<br>8<br>28<br>4             |
| 419<br>441<br>447<br>458<br>462<br>471<br>485        | $     \begin{array}{l}       E_g \\       B_{1g} \\       B_{2g} \\       E_g \\       E_g \\       A_{1g} \\       B_{1g} \\       E_g \\       A_{1e}     \end{array} $ | 0<br>41<br>5<br>8<br>28<br>4<br>87       |
| 419<br>441<br>447<br>458<br>462<br>471<br>485<br>486 | $     E_g      B_{1g}      B_{2g}      E_g      A_{1g}      B_{2g}      E_g      A_{1g}      B_{2g} $                                                                     | 0<br>41<br>5<br>8<br>28<br>4<br>87<br>37 |

Table 8 Optimized and experimental <sup>5,12,13</sup> (in brackets) lattice parameters in Å and cell volumes in Å<sup>3</sup>.

| compound                    | а                  | b                  | С                  | V per formula unit |
|-----------------------------|--------------------|--------------------|--------------------|--------------------|
| $\alpha$ – BeF <sub>2</sub> | 4.821 (4.7390(5))  |                    | 5.294 (5.1875(8))  | 53.27 (50.45(3))   |
| $\beta - \text{BeF}_2$      | 4.910 (4.8060(1))  |                    | 5.407 (5.2404(1))  | 56.45 (52.41(0))   |
| $\alpha - \text{BeCl}_2$    | 5.305 (5.285(3))   | 10.309 (9.807(3))  | 5.336 (5.227(3))   | 72.95 (67.7(2))    |
| $\beta - \text{BeCl}_2$     | 10.883 (10.595(5)) |                    | 18.457 (18.036(7)) | 68.31 (63(2))      |
| BeBr <sub>2</sub>           | 5.621 (5.569(4))   | 10.662 (10.405(6)) | 5.601 (5.543(3))   | 83.91 (80.3(3))    |
| $\alpha - \tilde{Bel}_2$    | 5.867 (6.025(3))   | 11.494 (11.316(4)) | 5.994 (6.035(3))   | 101.05 (102.9(3))  |
| $\beta - \text{Bel}_2$      | 11.962 (12.190(6)) |                    | 21.796 (21.325(8)) | 97.46 (99(3))      |
| -                           |                    |                    |                    |                    |

### Notes and references

- 1 STOE WinXPOW, Stoe & Cie GmbH, Darmstadt, Germany, 2011.
- 2 V. Petricek, M. Dusek, L. Palatinus, Jana 2006 The Crystallographic Computing System, Institute of Physics, Praha, Czech Republic, 2013.
- 3 R. E. Rundle and P. H. Lewis, J. Chem. Phys., 1952, 20, 132-134.
- 4 E. Spundflasche, H. Fink and H. Seifert, Z. Anorg. Allg. Chem., 1995, 621, 1723–1726.
- 5 S. I. Trojanov, Zh. neorg. Khim., 2000, 45, 1619-1624.
- 6 OPUS, BRUKER OPTIK GMBH, Ettlingen, Germany, 2009.
- 7 OriginPro 8, OriginLab, Northampton, MA, USA, 2007.
- 8 J. Baima, A. Erba, M. Rérat, R. Orlando and R. Dovesi, J. Phys. Chem. C, 2013, 117, 12864–12872.
- 9 K. Doll and H. Stoll, Phys. Rev. B, 1998, 57, 4327.
- 10 E. Apra, M. Causa, M. Prencipe, R. Dovesi and V. Saunders, J. Phys.: Condens. Matter, 1993, 5, 2969.
- 11 R. Nada, C. Catlow, C. Pisani and R. Orlando, Modell. Simul. Mater. Sci. Eng., 1993, 1, 165.
- 12 P. Ghalsasi and P. S. Ghalsasi, Inorg. Chem., 2011, 50, 86-89.
- 13 A. F. Wright and A. N. Fitch, J. Solid State Chem., 1988, 73, 298-304.