Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

# Molecular Motions in a Fluxional ( $\eta^6$ -Indenyl)Tricarbonylchromium Hemichelate: a Density

**Functional Theory Molecular Dynamics Study** 

Nicolas Sieffert \*a

<sup>a</sup> Univ. Grenoble-Alpes, CNRS, DCM, F-38000 Grenoble, France \*<u>Nicolas.sieffert@univ-grenoble-alpes.fr</u>

## --- Supporting Information ---

### Full reference 55:

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J.
Fox, Gaussian, Inc., Wallingford CT, 2013.

On the negligible influence of the damping function (PBE-D3 functional): First, the performance of the PBE-D3 functional (with zero damping, see method section for details) is evaluated, by performing TM optimizations on the six complexes shown in Figure 2, namely:  $\eta^1$ -3b<sub>1</sub>,  $\eta^1$ -3b<sub>2</sub>, syn  $\eta^3$ -3b<sub>1</sub>, syn  $\eta^3$ -3b<sub>2</sub>, anti  $\eta^3$ -3b and TS<sub>rot</sub>. As shown in Table S1, optimized distances at this level are within 0.036 Å (on the average) from the experimental structure in the case of  $\eta^1$ -3b<sub>1</sub>. Comparing PBE-D3 versus the previously employed PBE-D3(bj) functional in the cases of  $\eta^1$ -3b<sub>1</sub> and  $\eta^3$ -3b<sub>2</sub> reveals that the two levels provide very similar structures (see Table S1), with interatomic distances being within 0.025 Å of each other on the average for  $\eta^1$ -3b<sub>1</sub> and within 0.041 Å of each other on the average for  $\eta^3$ -3b<sub>2</sub>. The main deviations being found for weakly bonded atoms. Also, the relative energy of  $\eta^3$ -3b<sub>2</sub> vs  $\eta^1$ -3b<sub>1</sub> is 10.1 kcal/mol with PBE-D3(bj)<sup>[1]</sup> and 9.1 kcal/mol with PBE-D3, *i.e.* within 1.0 kcal/mol only. All these results indicate that PBE-D3 with zero damping provides a good agreement with both the experiment and calculations at the (previously employed)<sup>[2]</sup> PBE-D3(bj) level.

**Details on the sampling procedure in metadynamics simulations:** To ensure convergence, the DFT-MTD simulations **MTD1** and **MTD3** were performed in two stages: in a first stage, "traditional" metadynamics was performed using fixed hill height of 0.5 kcal/mol. Once all relevant free energy domains were "filled", well-tempered metadynamics<sup>[3]</sup> was employed in a second stage. In the latter, the initial hill height was still 0.5 kcal/mol throughout and  $\Delta T$  was 2277 K (corresponding to a bias factor  $\gamma =$  $(T+\Delta T)/T = 8.05$ ). The time-evolution of Gaussian heights is given in Figure S1. This approach was inspired by the recent "Transition-Tempered metadynamics" method, described in Ref<sup>[4]</sup>, and allows one to benefit from both the "fast" filling of the free energy wells by traditional metadynamics and the smooth convergence of well-tempered metadynamics. For the **MTD2** simulations, only the first stage of "standard" (fixed height) metadynamics was performed. The simulations were stopped once all relevant wells were filled. The convergence was checked by visual inspection of the free energy surfaces to ensure that symmetrical domains are found for equivalent conformers.

| Computational                       | level            | Cr-C10  | Cr-C1   | Cr-Pd    | Pd-C11  | Pd-C13  | Pd-C14  | Pd-C21  | Pd-C22  | Pd-C23  | Pd-C26  | Pd-C27  | CV1     | CV2     | CV4   | CV5       | CV6    |
|-------------------------------------|------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-----------|--------|
| - 1                                 |                  | А       | A       | (CV3) A  | A       | А       | А       | A       | A       | A       | A       | A       | A       |         | •     | А         | 0      |
| Complex $\eta^{1}$ -3b <sub>1</sub> |                  |         |         |          |         |         |         |         |         |         |         |         |         |         |       |           |        |
| expt <sup>a</sup>                   |                  | 2.275   | 2.344   | 2.747    | 2.184   | 2.868   | 3.419   | 2.762   | 2.443   | 2.152   | 2.146   | 2.160   | -1.234  | 4.415   | -64.9 | -0.319    | 75.7   |
| ADF(bj) <sup>a,b</sup>              | PBE-D3(BJ)       | 2.275   | 2.378   | 2.738    | 2.212   | 2.935   | 3.476   | 2.771   | 2.445   | 2.179   | 2.155   | 2.201   | -1.264  | 4.341   | -65.2 | -0.326    | 74.4   |
| TM <sup>c</sup>                     | PBE-D3           | 2.266   | 2.359   | 2.730    | 2.204   | 2.941   | 3.503   | 2.834   | 2.370   | 2.183   | 2.142   | 2.159   | -1.300  | 4.540   | -61.3 | -0.464    | 77.1   |
| CP2K-opt <sup>c</sup>               | PBE-D3           | 2.267   | 2.365   | 2.731    | 2.211   | 2.939   | 3.501   | 2.770   | 2.396   | 2.172   | 2.154   | 2.195   | -1.290  | 4.473   | -63.3 | -0.374    | 76.0   |
| DFT-MD <sup>c,d,e</sup>             | PBE-D3           | 2.284   | 2.382   | 2.757    | 2.230   | 2.960   | 3.520   | 2.815   | 2.452   | 2.188   | 2.174   | 2.209   | -1.289  | 4.301   | -63.8 | -0.363    | 76.2   |
|                                     |                  | (0.060) | (0.072) | (0.081)  | (0.069) | (0.106) | (0.113) | (0.194) | (0.179) | (0.064) | (0.055) | (0.068) | (0.117) | (0.289) | (8.0) | (0.306)   | (11.7) |
| Complex $\eta^1$ -3b,               | ,                |         |         |          |         |         |         |         |         |         |         |         |         |         |       |           |        |
| TM <sup>c</sup>                     | PBE-D3           | 2.262   | 2.361   | 2.721    | 2.221   | 2.977   | 3.532   | 2.641   | 2.483   | 2.158   | 2.137   | 2.186   | -1.311  | 4.350   | -66.3 | -0.158    | -68.7  |
| CP2K-opt <sup>c</sup>               | PBE-D3           | 2.261   | 2.359   | 2.722    | 2.221   | 2.970   | 3.540   | 2.738   | 2.392   | 2.178   | 2.155   | 2.199   | -1.309  | 4.480   | -63.0 | -0.345    | -65.1  |
| DFT-MD <sup>c,d,f</sup>             | PBE-D3           | 2.281   | 2.384   | 2.747    | 2.246   | 2.988   | 3.544   | 2.663   | 2.542   | 2.195   | 2.176   | 2.214   | -1.298  | 4.271   | -67.9 | -0.121    | -69.7  |
|                                     |                  | (0.064) | (0.081) | (0.080)  | (0.076) | (0.109) | (0.121) | (0.225) | (0.205) | (0.084) | (0.058) | (0.074) | (0.128) | (0.300) | (9.6) | (0.374)   | (12.0) |
| Complex svn n <sup>3</sup>          | -3b <sub>1</sub> |         |         |          |         |         |         |         |         |         |         |         |         |         |       |           |        |
| TM                                  | PBE-D3           | 2.385   | 2.385   | 3.276    | 2.293   | 2.196   | 2.294   | 3.222   | 3.222   | 2.145   | 2.154   | 2.145   | -0.001  | 5.511   | -96.5 | 0.000     | 0.1    |
| CP2K-opt <sup>c</sup>               | PBE-D3           | 2.382   | 2.382   | 3.262    | 2.310   | 2.208   | 2.304   | 3.161   | 3.176   | 2.159   | 2.166   | 2.156   | 0.006   | 5.446   | -94.5 | 0.015     | -0.4   |
| DFT-MD <sup>c,d,g</sup>             | PBE-D3           | 2.404   | 2.403   | 3.332    | 2.334   | 2.228   | 2.337   | 3.287   | 3.280   | 2.169   | 2.174   | 2.172   | -0.002  | 5.201   | -94.4 | -0.007    | -0.8   |
|                                     |                  | (0.080) | (0.077) | (0.200)  | (0.101) | (0.069) | (0.097) | (0.256) | (0.236) | (0.060) | (0.051) | (0.065) | (0.160) | (0.270) | (7.5) | (0.277)   | (11.2) |
| Complex syn $\eta^3$                | -3b <sub>2</sub> |         |         | <u> </u> | · · · · |         |         |         | · · · · |         |         | 2       |         |         |       | · · · · · |        |
| ADF(bj) b,č                         | PBE-D3(BJ)       | 2.422   | 2.423   | 3.166    | 2.323   | 2.254   | 2.324   | 3.160   | 3.160   | 2.176   | 2.147   | 2.176   | -0.001  | 5.340   | -95.2 | 0.000     | 179.9  |
| TM <sup>c</sup>                     | PBE-D3           | 2.396   | 2.396   | 3.236    | 2.289   | 2.205   | 2.289   | 3.232   | 3.232   | 2.157   | 2.124   | 2.157   | 0.000   | 5.520   | -95.1 | 0.000     | 180.0  |
| CP2K-opt <sup>c</sup>               | PBE-D3           | 2.386   | 2.386   | 3.227    | 2.301   | 2.213   | 2.301   | 3.181   | 3.176   | 2.167   | 2.138   | 2.167   | 0.000   | 5.464   | -94.2 | -0.005    | 180.0  |
| Complex anti n                      | <sup>3</sup> -3b |         |         |          |         |         |         |         |         |         |         |         |         |         |       |           |        |
| TM <sup>c</sup>                     | PBE-D3           | 2.285   | 2.285   | h        | 2.268   | 2.200   | 2.268   | h       | h       | 2.156   | 2.119   | 2.156   | 0.000   | 5.578   | -89.7 | h         | h      |
| CP2K-opt <sup>c</sup>               | PBE-D3           | 2.294   | 2.294   | h        | 2.283   | 2.213   | 2.283   | h       | h       | 2.168   | 2.135   | 2.168   | 0.000   | 5.514   | -89.6 | h         | h      |
| Complex TS <sub>rot</sub>           |                  |         |         |          |         |         |         |         |         |         |         |         |         |         |       |           |        |
| TM <sup>c</sup>                     | PBE-D3           | 2.323   | 2.343   | 2.850    | 2.213   | 3.117   | 3.698   | 4.188   | 2.310   | 2.136   | 2.146   | 2.225   | -1.485  | 4.594   | -97.6 | -1.878    | 56.3   |

**Table S1:** Selected geometrical parameters in six stereoisomers of **3b**, computed at different DFT levels (interatomic distances are in Å and dihedral angles are in °). *a* from reference <sup>[2]</sup>. *b*. Geometry optimization at the ZORA/all - electron TZP level computed with the ADF software (see reference <sup>[2]</sup>). *c*. This work. *d*. Average distances from (unbiased) DFT-MD simulations (standard deviations are given in parenthesis). *e*. Averages over 100 ps of DFT-MD (simulation **MD2**). *f*. Averages over the last 60 ps of DFT-MD (simulation **MD3**). *g*. Averages over the first 30 ps of DFT-MD (simulation **MD3**). *h*. not reported.

| $\rho(Pd,X)$ |                                 |        |                     | Indenyl             |                     |        | Carbonyl | l      |        | 2-methylal | lyl    |
|--------------|---------------------------------|--------|---------------------|---------------------|---------------------|--------|----------|--------|--------|------------|--------|
| • • • •      |                                 | Pd-Cr  | Pd-C11              | Pd-C13              | Pd-C14              | Pd-C20 | Pd-C21   | Pd-C22 | Pd-C23 | Pd-C26     | Pd-C27 |
| ТМ           | η¹-3b <sub>1</sub>              | а      | 0.0820              | а                   | а                   | а      | а        | 0.0586 | 0.0899 | 0.0913     | 0.0936 |
|              | $\eta^1$ -3b <sub>2</sub>       | а      | 0.0790              | a                   | a                   | а      | a        | 0.0488 | 0.0940 | 0.0921     | 0.0895 |
|              | syn $\eta^3$ -3b <sub>1</sub>   | а      | а                   | 0.0800              | a                   | а      | а        | а      | 0.0963 | 0.0906     | 0.0964 |
|              | syn $\eta^3$ -3b <sub>2</sub>   | а      | а                   | 0.0797              | а                   | а      | a        | a      | 0.0955 | 0.9469     | 0.0955 |
|              | anti $\eta^3$ -3b               | а      | а                   | 0.0809              | a                   | а      | а        | а      | 0.0950 | 0.0961     | 0.0950 |
|              | 2 <sup>b</sup>                  | а      | $0.0887 \ ^{\rm c}$ | 0.0886 <sup>c</sup> | 0.0887 <sup>c</sup> | а      | a        | a      | 0.0904 | 0.0892     | 0.0904 |
| CP2K-        | η <sup>1</sup> -3b <sub>1</sub> | а      | 0.0808              | а                   | а                   | а      | а        | 0.0559 | 0.0879 | 0.0890     | 0.0912 |
| opt          | $\eta^1$ -3b <sub>2</sub>       | а      | 0.0790              | a                   | a                   | а      | а        | 0.0570 | 0.0903 | 0.0888     | 0.0872 |
|              | $syn \eta^3 - 3b_1$             | 0.0178 | а                   | 0.0780              | a                   | а      | а        | а      | 0.0938 | 0.0885     | 0.0943 |
|              | syn $\eta^3$ -3b <sub>2</sub>   | 0.0183 | а                   | 0.0783              | a                   | а      | а        | а      | 0.0934 | 0.0920     | 0.0934 |
|              | anti $\eta^3$ -3b               | а      | а                   | 0.0788              | a                   | а      | а        | а      | 0.0928 | 0.0931     | 0.0927 |
|              | 2 <sup>b</sup>                  | а      | 0.0872 <sup>c</sup> | 0.0865 °            | 0.0862 °            | а      | а        | a      | 0.0889 | 0.0869     | 0.0885 |

Table S2: Density (a.u.) at bond critical points, as obtained from QTAIM analysis on TM-optimized and CP2K-optimized structures.

a. No bond critical point is obtained between this pair of atoms.

b. Complex **2** consists on the "[(benzene)Cr(CO)<sub>3</sub>]...[Pd(2-methylallyl)<sub>2</sub>]" contact pair (see structure in Figure S4). c. These values correspond to the second 2-methylallyl ligand, in place of the indenyl ligand.

| δ(Pd,X) |                               |       |                    | Indenyl            |                    |        | Carbonyl |        |        | 2-methylall | yl     |
|---------|-------------------------------|-------|--------------------|--------------------|--------------------|--------|----------|--------|--------|-------------|--------|
|         |                               | Pd-Cr | Pd-C11             | Pd-C13             | Pd-C14             | Pd-C20 | Pd-C21   | Pd-C22 | Pd-C23 | Pd-C26      | Pd-C27 |
| ТМ      | η¹-3b <sub>1</sub>            | 0.302 | 0.559              | 0.076              | 0.040              | 0.015  | 0.144    | 0.359  | 0.610  | 0.426       | 0.653  |
|         | $\eta^1$ -3b <sub>2</sub>     | 0.300 | 0.548              | 0.071              | 0.037              | 0.014  | 0.216    | 0.279  | 0.658  | 0.432       | 0.609  |
|         | syn $\eta^3$ -3b <sub>1</sub> | 0.103 | 0.421              | 0.386              | 0.421              | 0.008  | 0.063    | 0.063  | 0.691  | 0.431       | 0.691  |
|         | syn $\eta^3$ -3b <sub>2</sub> | 0.115 | 0.430              | 0.376              | 0.430              | 0.008  | 0.064    | 0.064  | 0.676  | 0.467       | 0.676  |
|         | anti $\eta^3$ -3b             | 0.033 | 0.460              | 0.374              | 0.460              | 0.003  | 0.005    | 0.005  | 0.673  | 0.451       | 0.673  |
|         | 2 <sup>a</sup>                | 0.001 | 0.611 <sup>b</sup> | 0.406 <sup>b</sup> | 0.611 <sup>b</sup> | 0.000  | 0.003    | 0.003  | 0.628  | 0.409       | 0.629  |
| CP2K-   | η¹-3b <sub>1</sub>            | 0.299 | 0.557              | 0.078              | 0.040              | 0.015  | 0.164    | 0.341  | 0.605  | 0.419       | 0.648  |
| opt     | $\eta^1$ -3b <sub>2</sub>     | 0.303 | 0.554              | 0.072              | 0.037              | 0.015  | 0.177    | 0.343  | 0.643  | 0.418       | 0.602  |
|         | syn $\eta^3$ -3b <sub>1</sub> | 0.105 | 0.414              | 0.380              | 0.417              | 0.008  | 0.070    | 0.067  | 0.683  | 0.424       | 0.686  |
|         | syn $\eta^3$ -3b <sub>2</sub> | 0.116 | 0.426              | 0.372              | 0.425              | 0.008  | 0.069    | 0.070  | 0.671  | 0.458       | 0.671  |
|         | anti $\eta^3$ -3b             | 0.033 | 0.455              | 0.368              | 0.455              | 0.003  | 0.005    | 0.005  | 0.668  | 0.442       | 0.667  |
|         | 2 <sup>a</sup>                | 0.001 | $0.607^{b}$        | 0.399 <sup>b</sup> | 0.604 <sup>b</sup> | 0.000  | 0.003    | 0.004  | 0.625  | 0.401       | 0.625  |

Table S3: Delocalization indices, as obtained from QTAIM analysis on TM-optimized and CP2K-optimized structures.

a. Complex 2 consists on the "[(benzene)Cr(CO)<sub>3</sub>]...[Pd(2-methylallyl)<sub>2</sub>]" contact pair (see structure in Figure S1).

b. These values correspond to the second 2-methylallyl ligand, in place of the indenyl ligand.



**Figure S1:** Time evolution (ps) of **CV1- CV6** in the course of metadynamics simulations (**MTD1-MTD3**) on complex **3b**. a. In well-tempered metadynamics runs (**MTD1** and **MTD3**), the hill height is multiplied by the bias factor (defined as  $\gamma = (T + \Delta T)/T$ , see Methods section for details).



**Figure S2:** Energy profile for " $Cr(CO)_3$ " rotation in complex 1, obtained at the TM level. (a). Profile computed using the C11-C10-Cr-C22 dihedral as coordinate. (b) Same profile expressed in function of **CV4** (see Figure 1 for definition) instead of the C11-C10-Cr-C22 dihedral.



**Figure S3:** Non-covalent interactions (NCIs) in complex 1. *(a)* Plot of the reduced density gradient (RDG, in a.u., see Ref<sup>[5]</sup> for definition) versus the electron density multiplied by the sign of the second Hessian eigenvalue (in a.u.). The black rectangle corresponds to the cutoffs that have been selected for plotting the NCIs (RDG < 0.4 a.u. and -0.04 <  $\rho$  < 0.04 a.u.). *(b)* NCIs plotted using NCIplot<sup>[5-6]</sup> and VMD.<sup>[7]</sup> *(c)* NCIs plotted using AIMAll.<sup>[8]</sup> The color code (according to the value of sign( $\lambda_2$ ) $\rho$ ) is: red +0.04, yellow +0.02, green 0.00, cyan -0.02 and blue -0.04 a.u..



**Figure S4:** Location of bond critical points as obtained from QTAIM analysis on  $\eta^{1}$ -3b<sub>1</sub>, syn  $\eta^{3}$ -3b<sub>1</sub>, anti  $\eta^{3}$ -3b and 2, on TM-optimized (*left column*) and CP2K-optimized structures (*right column*). Colors: H (white), C (black), O (red), Cr (purple) and Pd (cyan). Bond critical points are shown as orange spheres. Other types of critical points are omitted for clarity.



**Figure S5:** Results of QTAIM and NCI analyses on TM-optimized structures of  $\eta^1$ -**3b**, *syn*  $\eta^3$ -**3b**, *anti*  $\eta^3$ -**3b** and **TSrot**. Bond critical points are shown as purple spheres and bond paths are shown as black lines. NCI isosurfaces (s = 0.4 a.u.) are superimposed on the QTAIM structures, in the range of  $-0.04 < \text{sign}(\lambda_2)\rho < +0.04$  a.u.. The color code (according to the value of sign $(\lambda_2)\rho$ ) is: red +0.04, yellow +0.02, green 0.00, cyan -0.02 and blue -0.04 a.u.. The labeling of selected atoms is shown in black.



**Figure S6:** Time evolution (in ps) of the delocalization index ( $\delta$ ), the Wiberg bond index (w) and the density ( $\rho$ ) (in a.u.) at the bond critical point between Pd and Cr atoms, as obtained from QTAIM and NBO analyses during the spontaneous  $\eta^3 \rightarrow \eta^1$  process occurring in simulation **MD3**.



**Figure S7:** Time evolution (in ps) of the density ( $\rho$  in a.u.) at the bond critical point between Pd and: C atoms from the indenyl (*top*), carbonyl's (*middle*) and 2-methylallyl (*bottom*) ligands, as obtained from QTAIM analysis during the spontaneous  $\eta^3 \rightarrow \eta^1$  process occurring in simulation **MD3.**  $\rho$  is set to zero when no bond critical point is found between the two atoms.



**Figure S8:** Time evolution (in ps) of the delocalization index ( $\delta$ ), the Wiberg bond index (w) between Pd and: C atoms from the indenyl (*top*), carbonyl's (*middle*) and 2-methylallyl (*bottom*) ligands, as obtained from QTAIM and NBO analyses during the spontaneous  $\eta^3 \rightarrow \eta^1$  process occurring in simulation **MD3**.



**Figure S9**: Summation of delocalisation indexes (*top*) and Wiberg bond indexes (*bottom*) during the spontaneous  $\eta^3 \rightarrow \eta^1$  process occurring in simulation **MD3**.

In the case of delocalisation indices, " $\Sigma$  indenyl" denotes  $\delta(Pd,C11) + \delta(Pd,C13) + \delta(Pd,C14)$ .

" $\Sigma$  carbonyl's" is  $\delta(Pd,C20) + \delta(Pd,C21) + \delta(Pd,C22)$ . " $\Sigma$  2-methylallyl" is  $\delta(Pd,C23) + \delta(Pd,C26) + \delta(Pd,C27)$ . "Cr" is  $\delta(Pd,Cr)$ . " $\Sigma$  all" is the sum of all the contributions. The same definition is adopted for Wiberg bond indexes. See Figures S6 and S8 for the detailed contributions.

# XYZ coordinates (in Å). Geometry optimizations at the "TM" level (PBE-D3/def2-TZVPP).

| 38              |            |                 |           |
|-----------------|------------|-----------------|-----------|
| $\eta^1 - 3b_1$ | (energy =  | -2054.753267879 | h)        |
| С               | 6.1768311  | 5.3896379       | 8.3747860 |
| С               | 5.4118061  | 6.4260489       | 8.9528689 |
| Н               | 4.9517405  | 6.2974523       | 9.9316562 |
| С               | 5.2529549  | 7.6472436       | 8.2506782 |
| Н               | 4.6747790  | 8.4526199       | 8.7004212 |
| С               | 5.8545851  | 7.8515447       | 6.9829439 |
| Н               | 5.7263067  | 8.8026123       | 6.4705860 |
| С               | 6.7114172  | 6.8660132       | 6.4366897 |
| Н               | 7.2433950  | 7.0592153       | 5.5058289 |
| С               | 6.9038717  | 5.6407337       | 7.1296515 |
| С               | 7.7745721  | 4.5061109       | 6.8981425 |
| Н               | 8.1013495  | 4.2049839       | 5.9020838 |
| С               | 7.4362996  | 3.5324098       | 7.9303359 |
| С               | 6.5159500  | 4.0692896       | 8.8111427 |
| Н               | 6.1570735  | 3.6006018       | 9.7244771 |
| С               | 8.0455202  | 2.1714837       | 8.0147542 |
| H               | 9.1309851  | 2.2391602       | 8.1829065 |
| H               | 7.9050003  | 1.6147782       | 7.0756232 |
| H               | 7.6091120  | 1.5845430       | 8.8321361 |
| С               | 7.4083189  | 8.7026807       | 9.7443551 |
| С               | 8.7287688  | 8.4222664       | 7.6942482 |
| С               | 8.4967926  | 6.5133039       | 9.7503624 |
| С               | 11.3575916 | 6.6268574       | 8.1702567 |
| H               | 11.4945712 | 7.2127363       | 7.2596702 |
| H               | 11.4948502 | 7.1654933       | 9.1083159 |
| С               | 11.4888134 | 5.2131891       | 8.1515173 |
| С               | 11.1001813 | 4.5489732       | 6.9516999 |
| H               | 11.0596242 | 3.4591328       | 6.9325983 |
| H               | 11.2533985 | 5.0333581       | 5.9840918 |
| С               | 11.8138457 | 4.4420069       | 9.4035852 |
| H               | 11.3651676 | 3.4403077       | 9.3878467 |
| Н               | 11.4672176 | 4.9690560 1     | 0.3006043 |
| H               | 12.9054714 | 4.3199728       | 9.4806905 |
| 0               | 7.4107863  | 9.5456803 1     | 0.5489037 |
| 0               | 9.4788566  | 9.1592565       | 7.1848861 |
| 0               | 8.9752609  | 6.0688583 1     | 0.7264979 |
| Cr              | 7.4361898  | 7.3817762       | 8.4795387 |
| Pd              | 9.4386535  | 5.6785507       | 7.7425315 |

38

 $n^{1}-3b_{2}$  (Energy = -2054,752461131)

| ч. | -3D <sub>2</sub> (Energy - | -2034./3240113 | L)        |
|----|----------------------------|----------------|-----------|
| С  | 10.8195098                 | 9.6017096      | 7.8344462 |
| С  | 11.9616752                 | 9.0085541      | 8.4213124 |
| Н  | 12.8158756                 | 9.6181842      | 8.7127787 |
| С  | 11.9848870                 | 7.6100933      | 8.6369604 |
| Н  | 12.8578498                 | 7.1539904      | 9.1007482 |
| С  | 10.8792090                 | 6.7912676      | 8.2862136 |
| Н  | 10.9181238                 | 5.7201693      | 8.4726046 |
| С  | 9.6883113                  | 7.3807353      | 7.8012082 |
| Н  | 8.8089924                  | 6.7641915      | 7.6180593 |
| С  | 9.6311580                  | 8.7856017      | 7.5949959 |
| С  | 8.5539013                  | 9.6828110      | 7.2290004 |
| Н  | 7.7079475                  | 9.3701107      | 6.6155970 |
| С  | 9.1669551                  | 10.9987793     | 7.0913462 |

| С  | 10.4925563 | 10.9494653 | 7.4825974  |
|----|------------|------------|------------|
| Н  | 11.1636283 | 11.8005528 | 7.5709801  |
| С  | 8.4340662  | 12.2115801 | 6.6205496  |
| Н  | 7.5937110  | 12.4485039 | 7.2893933  |
| Н  | 8.0052801  | 12.0487371 | 5.6197371  |
| Н  | 9.0930863  | 13.0871981 | 6.5729882  |
| С  | 11.0569451 | 7.9169226  | 11.3011989 |
| С  | 8.8096902  | 7.4028540  | 10.4701326 |
| С  | 9.9229672  | 9.9844566  | 10.5596683 |
| С  | 5.9434447  | 10.6102043 | 9.0758428  |
| Н  | 6.2260313  | 11.6381602 | 9.3152448  |
| Н  | 5.3668286  | 10.4780777 | 8.1592589  |
| С  | 5.8326379  | 9.6430887  | 10.1167945 |
| С  | 6.7318396  | 9.7731225  | 11.2074968 |
| Η  | 6.7883874  | 8.9774571  | 11.9504167 |
| Н  | 7.0805429  | 10.7574328 | 11.5254938 |
| С  | 4.9621214  | 8.4228378  | 9.9680902  |
| Н  | 5.4096553  | 7.5511348  | 10.4614256 |
| Η  | 4.7819748  | 8.1832305  | 8.9120423  |
| Н  | 3.9854947  | 8.6136357  | 10.4396205 |
| 0  | 11.5761735 | 7.6436749  | 12.3082938 |
| 0  | 8.0215448  | 6.6804730  | 10.9500221 |
| 0  | 9.9397457  | 11.0188118 | 11.1073001 |
| Cr | 10.2099504 | 8.3422505  | 9.7367107  |
| Pd | 7.8133718  | 9.5615595  | 9.3194154  |

38

|     | 2                                       |              |            |
|-----|-----------------------------------------|--------------|------------|
| syn | η <sup>3</sup> -3b <sub>1</sub> (energy | = -2054.7402 | 204687 h)  |
| С   | 7.8444135                               | 11.0330292   | 8.4240338  |
| С   | 8.1551443                               | 11.1247029   | 7.0395322  |
| Η   | 8.6810627                               | 11.9935210   | 6.6475596  |
| С   | 7.7055743                               | 10.1100657   | 6.1624357  |
| Н   | 7.8930758                               | 10.1986503   | 5.0943982  |
| С   | 7.0862746                               | 8.9340813    | 6.6735708  |
| Н   | 6.8052228                               | 8.1341659    | 5.9917302  |
| С   | 6.9110793                               | 8.7617968    | 8.0666030  |
| Η   | 6.4913189                               | 7.8354804    | 8.4551057  |
| С   | 7.2162606                               | 9.8393350    | 8.9427897  |
| С   | 7.0236989                               | 10.0392199   | 10.3661140 |
| Н   | 6.4852620                               | 9.3567733    | 11.0187570 |
| С   | 7.3431741                               | 11.4015606   | 10.6782796 |
| С   | 8.0252719                               | 11.9423713   | 9.5390518  |
| Н   | 8.3838957                               | 12.9647301   | 9.4509033  |
| С   | 6.9699152                               | 12.1398606   | 11.9263926 |
| Η   | 6.9182456                               | 11.4641745   | 12.7897926 |
| Η   | 5.9807475                               | 12.6118543   | 11.8129176 |
| Н   | 7.6929731                               | 12.9341157   | 12.1519737 |
| С   | 9.8274854                               | 8.1800625    | 6.2699940  |
| С   | 9.5184069                               | 7.7829157    | 8.7227982  |
| С   | 10.6834780                              | 9.9994584    | 7.7596345  |
| С   | 10.0967821                              | 9.1523236    | 12.2048681 |
| Н   | 9.7079059                               | 9.6544982    | 13.0935953 |
| Η   | 9.9509114                               | 8.0715391    | 12.1638409 |
| С   | 11.1648854                              | 9.7269262    | 11.4559080 |
| С   | 11.1461260                              | 11.1475458   | 11.3407555 |
| Η   | 11.8189517                              | 11.6235138   | 10.6253753 |
| Н   | 10.8200215                              | 11.7688768   | 12.1779016 |
| С   | 12.1670260                              | 8.8819289    | 10.7219493 |
| Н   | 11.7594804                              | 7.8997169    | 10.4585231 |

| Н  | 13.0268912 | 8.7185643  | 11.3909840 |
|----|------------|------------|------------|
| Н  | 12.5378171 | 9.3785846  | 9.8186829  |
| 0  | 10.3151197 | 7.5530204  | 5.4124054  |
| 0  | 9.7665510  | 6.8663582  | 9.4065379  |
| 0  | 11.7089203 | 10.5615898 | 7.8008869  |
| Cr | 9.0628245  | 9.1571428  | 7.5971138  |
| Pd | 9.2779389  | 10.3641414 | 10.6355660 |
|    |            |            |            |

38

 $syn \ \eta^3 - 3b_2$  (Energy = -2054.738751826)

| Ċ  | 0.4033640  | 1.7804277  | 0.7233460  |
|----|------------|------------|------------|
| С  | 1.6349858  | 1.7339762  | 1.4309516  |
| Н  | 1.6463900  | 1.6749427  | 2.5178818  |
| С  | 2.8487756  | 1.8454233  | 0.7119839  |
| Н  | 3.7939725  | 1.8682049  | 1.2503768  |
| С  | 2.8487548  | 1.8453836  | -0.7121038 |
| Н  | 3.7939385  | 1.8681359  | -1.2505318 |
| С  | 1.6349411  | 1.7338749  | -1.4310194 |
| Η  | 1.6463064  | 1.6747818  | -2.5179419 |
| С  | 0.4033395  | 1.7803893  | -0.7233766 |
| С  | -0.9815613 | 1.8439523  | -1.1537855 |
| Н  | -1.3033488 | 1.9612098  | -2.1854878 |
| С  | -1.8013248 | 2.0685478  | 0.0000151  |
| С  | -0.9815181 | 1.8439921  | 1.1537914  |
| Н  | -1.3032749 | 1.9612907  | 2.1855038  |
| С  | -3.2292573 | 2.5203928  | 0.0000654  |
| Н  | -3.7621161 | 2.1606003  | -0.8896592 |
| Н  | -3.2859079 | 3.6205816  | 0.0000011  |
| Н  | -3.7620069 | 2.1607020  | 0.8899001  |
| С  | 3.4582094  | -0.8444451 | 0.0004478  |
| С  | 1.3819318  | -1.1607150 | -1.3160782 |
| С  | 1.3816220  | -1.1606425 | 1.3160773  |
| С  | -2.0213540 | -1.7649363 | 1.1985358  |
| Η  | -1.1403141 | -2.4057485 | 1.2500430  |
| Η  | -2.4980684 | -1.5419582 | 2.1543097  |
| С  | -2.7862257 | -1.6773211 | -0.0000428 |
| С  | -2.0212354 | -1.7649141 | -1.1985382 |
| Н  | -2.4978642 | -1.5419213 | -2.1543583 |
| Н  | -1.1401886 | -2.4057230 | -1.2499811 |
| С  | -4.2522300 | -1.3403035 | -0.0001309 |
| Н  | -4.5339480 | -0.7680907 | 0.8934661  |
| Н  | -4.8416082 | -2.2708657 | -0.0003270 |
| Н  | -4.5337708 | -0.7678415 | -0.8936251 |
| 0  | 4.4863486  | -1.3999240 | 0.0008832  |
| 0  | 1.1362926  | -1.9233356 | -2.1677230 |
| 0  | 1.1359160  | -1.9232562 | 2.1677081  |
| Cr | 1.8628658  | 0.0230265  | 0.0000264  |
| Pd | -1.3709279 | -0.0938803 | 0.0000380  |

38 anti  $\eta^3$ -3b ( -2054.737433788) 0.4690693 1.9239765 0.7167341 С 1.7636901 1.4272098 С 1.6915216 2.5138298 Η 1.6935658 1.6948176 0.7062552 2.9041223 С 1.6889584 3.8416536 1.2405732 Η 1.5493098 1.7068718 С 2.9045422 -0.7208230

| Н  | 3.8424387  | 1.5807393  | -1.2578670 |
|----|------------|------------|------------|
| С  | 1.6926212  | 1.8004916  | -1.4407427 |
| Н  | 1.6955481  | 1.7594247  | -2.5287305 |
| С  | 0.4696442  | 1.9423314  | -0.7271632 |
| С  | -0.9098371 | 2.1383973  | -1.1554465 |
| Н  | -1.2529156 | 2.0835071  | -2.1854662 |
| С  | -1.7544298 | 2.0568429  | -0.0044787 |
| С  | -0.9106787 | 2.1092579  | 1.1487274  |
| Н  | -1.2545457 | 2.0287553  | 2.1768139  |
| С  | -3.2401858 | 1.8880520  | -0.0070816 |
| Н  | -3.4941503 | 0.8161665  | -0.0208178 |
| Н  | -3.6949159 | 2.3495844  | -0.8928725 |
| Н  | -3.6953747 | 2.3268646  | 0.8899649  |
| С  | 2.9643530  | -1.1300727 | -0.0490874 |
| С  | 0.7566857  | -0.9230045 | -1.3199947 |
| С  | 0.7665931  | -0.9589996 | 1.2409355  |
| С  | -0.9286815 | 5.8447533  | 1.2549450  |
| Η  | -1.9956586 | 6.0669417  | 1.3205279  |
| Η  | -0.3860736 | 5.8441345  | 2.2010961  |
| С  | -0.2148458 | 6.0876305  | 0.0463705  |
| С  | -0.9271054 | 5.8747570  | -1.1687517 |
| Н  | -0.3832512 | 5.8975395  | -2.1139294 |
| Н  | -1.9940121 | 6.0984760  | -1.2302398 |
| С  | 1.2734074  | 6.3212861  | 0.0501884  |
| Н  | 1.7475022  | 5.8811314  | 0.9370261  |
| Н  | 1.4739378  | 7.4037756  | 0.0640965  |
| Η  | 1.7484630  | 5.9038497  | -0.8470726 |
| 0  | 3.8426037  | -1.8994344 | -0.0620568 |
| 0  | 0.2156898  | -1.5453598 | -2.1459034 |
| 0  | 0.2327806  | -1.6055784 | 2.0528049  |
| Cr | 1.5918645  | 0.0789113  | -0.0284437 |
| Pd | -0.8834510 | 4.0769250  | 0.0209530  |

38

### **TSrot** (energy = -2054.730981493)

| TOTO | c (chergy  | 2004./000014. | 551        |
|------|------------|---------------|------------|
| С    | 1.2229364  | 2.0302370     | 0.1309632  |
| Cr   | 1.5654742  | -0.2848123    | 0.0259988  |
| С    | 0.3786043  | -1.7159919    | 0.3706410  |
| Pd   | -1.2510838 | -0.2743286    | -0.4060793 |
| С    | -3.3470288 | 0.0146399     | -0.6966524 |
| С    | -3.1274632 | -1.2696531    | -0.1021224 |
| С    | -3.5283415 | -1.5694999    | 1.3168616  |
| С    | 2.5927194  | 1.6832067     | 0.2718038  |
| С    | 3.2307872  | 0.9220126     | -0.7318033 |
| С    | 2.4939048  | 0.4532594     | -1.8649566 |
| С    | 1.1201349  | 0.7189684     | -1.9891525 |
| С    | 0.4647807  | 1.4942945     | -0.9848377 |
| С    | -0.9182596 | 1.8787102     | -0.7949054 |
| С    | -0.9443430 | 2.7227420     | 0.3942944  |
| С    | 0.3191801  | 2.7885002     | 0.9455001  |
| С    | -2.1791389 | 3.3774901     | 0.9210788  |
| 0    | 0.0583715  | -2.7634618    | 0.8158229  |
| С    | 1.6592778  | -0.3071116    | 1.8498230  |
| 0    | 1.7290987  | -0.3011331    | 3.0141575  |
| С    | 2.6578875  | -1.7401507    | -0.0759520 |
| 0    | 3.3634270  | -2.6654500    | -0.1486722 |
| С    | -2.3392688 | -2.1622089    | -0.8553330 |
| Н    | 3.1583470  | 2.0126385     | 1.1423921  |
| Н    | 4.2825149  | 0.6635136     | -0.6316109 |
| Н    | 2.9958319  | -0.1634130    | -2.6081197 |

| Н | 0.5585660  | 0.3148536  | -2.8307583 |
|---|------------|------------|------------|
| Η | -1.6010038 | 2.0486963  | -1.6281904 |
| Н | 0.5880957  | 3.2971382  | 1.8687842  |
| Н | -2.8911118 | 2.6305009  | 1.3061434  |
| Η | -2.7043203 | 3.9384299  | 0.1327458  |
| Η | -1.9470905 | 4.0712836  | 1.7386830  |
| Н | -2.3267857 | -2.1031032 | -1.9456317 |
| Н | -1.9889739 | -3.0916869 | -0.4104399 |
| Η | -3.8302062 | 0.7988374  | -0.1123409 |
| Н | -3.4712074 | 0.0936945  | -1.7792541 |
| Н | -3.5549995 | -0.6573377 | 1.9268883  |
| Η | -2.8413217 | -2.2881593 | 1.7806139  |
| Н | -4.5383074 | -2.0079450 | 1.3269856  |

### **References for the Supporting Information:**

[1] Djukic, J. P., personal communication, May 2016.

[2] C. Werlé, M. Hamdaoui, C. Bailly, X.-F. Le Goff, L. Brelot and J.-P. Djukic, *J. Am. Chem. Soc.* **2013**, *135*, 1715-1718.

[3] A. Barducci, G. Bussi and M. Parrinello, Phys. Rev. Lett. 2008, 100, 020603.

[4] J. F. Dama, G. Rotskoff, M. Parrinello and G. A. Voth, J. Chem. Theory Comput. 2014, 10, 3626-3633.

[5] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W.

Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.

[6] J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, *J. Chem. Theory Comput.* **2011**, *7*, 625-632.

[7] W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics 1996, 14, 33-38.

[8] AIMAll (Version 15.09.27), Todd A. Keith, TK Gristmill Software, Overland Park KS,

USA, 2016 (aim.tkgristmill.com. Last accessed: June 2018)