Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting information for:

Diruthenium(II) Capped Oligothienylethynyl Bridged Highly Soluble Organometallic *Wires* for Long-Range Electronic Coupling

Sourav Saha Roy,^a Amit Sil,^a Dipanjan Giri^a Sabyasachi Roy Chowdhury,^a Sabyashachi Mishra^{*a} and Sanjib K. Patra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, INDIA, E-mail: <u>skpatra@chem.iitkgp.ac.in</u>; Tel: +913222283338

1. Synthesis and Characterization	S2-S50
1a. Synthesis	S2-S6
1b. NMR spectra	S7-S39
1c. Mass spectrometry	S40-S43
1d. FTIR spectra	S44-S48
1e. CHN analysis	S48-S50
2. Photophysical studies	S50-S51
3. Thermal analysis	S51-S52
3a. TGA	S51-S51
3b. DSC	S52
4. Electrochemical Characterization	S53
5. Crystallographic data	S54-S55
6. Estimation of intermetallic distances in the synthesized diruthenium(II)	
complexes	S56-S57
7. UV-vis-NIR measurements	S57-S58
8. Selected Frontier molecular orbitals obtained from DFT calculations	S59
9. References	S60

1. Synthesis and Characterization

1a. Synthesis and Characterization

Scheme S1: Synthesis of 2,5-bis(ethynyl)-3-hexylthiophene (O1) Reagents and conditions: a) 2.5 eqv. NBS, THF, 25° C, 12h; b) 3.6 eqv. Ethynyltrimethylsilane, 3 mol% Pd(PPh₃)₂Cl₂, 3 mol% CuI, Et₃N, DCM, 25° C, 12h; c) K₂CO₃, MeOH/DCM, 25° C, 2h.

Scheme S2. Synthesis of 5-iodo-2-ethynyl(trimethylsilyl)-3-hexylthiophene (6) Reagents and conditions: a) 1.2 eqv. NIS, DCM/AcOH, 0°C, 12h; b) 1.3 eqv. Ethynyltrimethylsilane, 3 mol% Pd(PPh₃)₂Cl₂, 3 mol% CuI, Et₃N, DCM, 25°C, 12h;c) LDA, -78°C, I₂, THF, 12h.

2,5-bis[ethynyl(trimethylsilyl)]-3-hexylthiophene (**3**). To a solution of 3-hexyl-2,5-dibromothiophene (0.5 g, 1.53 mmol), bis(triphenylphosphine) palladium(II) chloride (0.03 g, 0.05 mmol, 3 mol%), copper(I) iodide (0.01 g, 0.05 mmol, 3 mol%), and DCM (15 mL) were added. Then triethylamine (5 mL, 34 mmol) was added to it at room temperature while stirring. The resulting clear orange solution was stirred for 5 min before (trimethylsilyl)-acetylene (0.8 mL, 5.5 mmol) was added. The whole reaction mixture was stirred for 12h at room temperature and poured into water, and the aqueous layer was extracted with DCM. The organic layer was dried over anhydrous MgSO₄, and the crude product was concentrated *in vacuo*. The product was purified using silica gel column chromatography (hexane as eluent) to get dark yellow oily product with 0.45 g, (82% yield).¹H NMR (400MHz, CDCl₃,) δ (ppm): 6.98 (s, 1H, C<u>H</u> thienyl), 2.61 (t, J=6Hz, 2H, C<u>H</u>₂-C₅H₁₁), 1.57 (m, 2H, Th-CH₂-C<u>H</u>₂-C₄H₉), 1.31(m, 6H), 0.93(m, 3H), 0.24(s, 18H, SiMe₃).¹³C {¹H} NMR (100MHz, CDCl₃,) δ (ppm): 148.5, 133.6 (<u>C</u>H thienyl), 123.0, 120.1, 101.9, 99.6, 97.6, 97.1, 31.8, 30.1, 29.5, 28.9, 22.8, 14.3, 0.03 (SiMe₃).

2-[ethynyl(trimethylsilyl)]-3-hexylthiophene (5). To a solution of 3-hexyl-2-iodothiophene (0.5 g, 1.69 mmol), bis(triphenylphosphine) palladium(II) chloride (0.04 g, 0.05 mmol, 3 mol%), copper(I) iodide (0.01 g, 0.05 mmol, 3 mol%), and DCM (10 mL) were added. Then triethylamine(5 mL, 34 mmol) was added to it at room temperature while stirring. The

resulting clear orange solution was stirred for 5 min before (trimethylsilyl)-acetylene (0.3 mL, 2.02 mmol) was added. The reaction mixture was stirred for 12h at room temperature and poured into water, and the aqueous layer was extracted with DCM. The organic layer was dried over anhydrous MgSO₄, and the crude product was concentrated *in vacuo*. It was chromatographedon silica gel using hexane as eluent to get dark yellow oily product with 0.25 g (78% yield).¹H NMR (400MHz, CDCl₃,) δ (ppm): 7.12 (d, J=4 Hz, 1H, 5 position C<u>H</u> thienyl), 6.83 (d, J=4 Hz, 1H, 4 position C<u>H</u> thienyl), 2.69 (t, J=8 Hz, 2H, Th-C<u>H</u>₂-C₅H₁₁), 1.61 (m, 2H, Th-CH₂-C₄H₉), 1.31(m, 6H), 0.88 (m, 3H), 0.24(s, 9H, SiMe₃).¹³C {¹H} NMR (100MHz, CDCl₃,) δ (ppm): 148.5, 133.6 (<u>C</u>H thienyl), 123.0, 120.1, 101.9, 99.6, 97.6, 97.1, 31.8, 30.1, 29.5, 28.9, 22.8, 14.3, 0.03 (SiMe₃).

3-hexyl-5-iodo-2-((trimethylsilyl)ethynyl)thiophene (6). To a solution of diisopropylamine (1.6 mL, 11.7 mmol) in THF (8 mL) at -78°C was added dropwise n-butyllithium (14.68 mL, 23.5mmol, 1.6 M in hexanes). The mixture was warmed to 0°C for 30 min and then recooled to -78°C. 2-[ethynyl(trimethylsilyl)]-3-hexylthiophene(1.50 g, 5.34 mmol) in THF (10 mL) at room temperature was then added dropwise, and the solution was warmed from -78°C to 0°C for next 10 min. Next, the solution was recooled to -78°C. While at -78°C, iodine (3.26 g, 12.8 mmol) in THF (10 mL) was added via cannula, and the solution was allowed to warm up to room temperature overnight. The mixture was quenched with water, and the aqueous layer was extracted with diethyl-ether. The organic extracts were washed with brine and aqueous sodium thiosulfate. The ether layers were dried over anhydrous MgSO₄. The solvent was removed by rotary evaporation, and the residue was purified by flash chromatography (silica gel, hexane) to provide 2.10 g (74% yield) of the title product as a yellow liquid.¹H NMR (400 MHz, CDCl₃), δ (ppm): 6.99 (s, 1H, C<u>H</u> thienyl), 2.63 (t, J =4 Hz, 2H, Th-C<u>H</u>₂-C₅H₁₁), 1.57 (m, 2H, Th-CH₂- $CH_2-C_4H_9$, 1.31 (m, 6H), 0.87 (m, 3H), 0.24 (s, 9H, SiMe₃).¹³C {¹H} NMR (100 MHz, CDCl₃,) δ(ppm): 150.5, 138.1 (CH thienyl), 124.7, 102.8, 96.3, 74.1 (C-I thienyl), 31.7, 30.1, 29.3, 29.0, 22.8, 14.3, 0.1 (SiMe₃).

2,5-bis(ethynyl)-3-hexylthiophene (O1). 2,5-Bis[ethynyl(trimethylsilyl)]-3-hexylthiophene(1 g, 2.97 mmol) and potassium carbonate (0.82 g, 5.94 mmol) were dissolved in a solution of DCM (15 mL) and methanol (10 mL). The solution was allowed to stir at room temperature for 2h. The reaction mixture was poured into water and extracted with DCM. The organic extract was washed with brine. The combined organic layers were dried over anhydrous MgSO4. The solvent was removed by rotary evaporation. It was purified using silica gel column chromatography (hexane as eluent) to afford 2,5-bis(ethynyl)-3-hexylthiophene as yellowish oil with 0.6 g (94% yield). ¹H NMR (400 MHz, CDCl3,) δ (ppm): 7.01 (s, 1H, CH thienyl),

3.44 (s, 1H, -C=CH), 3.32 (s, 1H, -C=CH), 2.64 (t, J=6 Hz, 2H, Th-C<u>H</u>₂-C₅H₁₁), 1.58 (m, 2H, Th-CH₂-C<u>H</u>₂-C₄H₉), 1.31 (m, 6H), 0.89 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃,) δ (ppm): 148.9, 133.9 (<u>C</u>H thienyl), 122.2, 119.0, 84.1 (-C=<u>C</u>H), 81.8 (-C=<u>C</u>H), 76.8 (-C=CH), 76.2 (-C=CH), 31.8, 30.1, 29.5, 28.9, 22.8, 14.3. UV-Vis (1, 2 DCE) λ_{max} : 298 nm, ($\epsilon = 4.5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$).

Synthesis of Bis(trimethylsilylethynyl) thienylethynyl Derivatives (7-9)

Compound 7: An oven dried Schlenk flask were charged with dialkynyl derivative O1 (0.31 g, 1.43 mmol), 5-iodo-2-ethynyl(trimethylsilyl)-3-hexylthiophene 6 (1.17 g, 3.00 mmol, 2.1 eq.), tetrakis(triphenylphosphine) palladium(0) (0.12 g, 0.1 mmol, 3.5 mol%), copper(I) iodide (0.01 g, 0.04 mmol, 3 mol%) and dry DCM/Et₃N (v/v, 2/1). The mixture was stirred at room temperature under argon atmosphere for 12h. After completion of reaction, the reaction mixture was extracted with DCM. The combined organic extracts were washed with water and brine, and then dried over anhydrous MgSO4. After removal of solvents under reduced pressure, the residue product was purified through column chromatography eluting with 3% ethyl acetate-hexane mixture to afford 7 as yellow oil (0.72 g, 68%). ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.03 (s, 1H, CH thienyl), 7.00 (s, 2H, CH thienyl), 2.68-2.62 (m, 6H, Th-CH₂-C₅H₁₁), 1.65-1.58 (m, 6H, Th-CH₂-CH₂-C₄H₉), 1.32-1.31 (m, 20H), 0.90-0.84 (m, 12H), 0.26 (s, 18H, SiMe₃). ¹³C {¹H} NMR (150 MHz, CDCl₃,) δ (ppm): 148.9, 148.6, 133.4 (CH thienyl), 133.3 (CH thienyl), 133.0 (CH thienyl), 123.2, 122.6, 122.3, 120.8, 120.6, 120.1, 102.8, 102.6, 96.9, 89.8, 87.6, 86.9, 86.2, 31.8, 31.7, 30.2, 30.1, 29.7, 29.6, 29.1, 29.0, 22.8, 14.3, 0.1 (SiMe₃). MALDI-TOF (m/z): C₄₄H₆₀S₃Si₂, calculated value 740.339 (M⁺), found 740.749 (M⁺).

Compound 8: Compound 8 was prepared by similar procedure to that for 7. From O3 (0.4 g, 0.67 mmol), 5-iodo-2-ethynyl(trimethylsilyl)-3-hexylthiophene 6 (0.55 g, 1.41 mmol, 2.1 eq.), tetrakis(triphenylphosphine) palladium(0) (0.06 g, 0.05 mmol, 3.5 mol%), copper(I) iodide (0.004 g, 0.02 mmol, 3 mol%), 8 was obtained as orange oil (0.53 g, 71%). ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.05-7.04 (m, 3H, thienyl), 6.99 (s, 2H, thienyl), 2.69-2.62 (m, 10H, Th-CH₂-C₅H₁₁), 1.65-1.60 (m, 10H, Th-CH₂- CH₂-C₄H₉), 1.31 (br, 35H), 0.90-0.87 (m, 18H), 0.26 (s, 18H, SiMe₃). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 148.9, 148.6, 133.5, 133.3, 133.1, 133.0, 123.4, 123.2, 123.1, 122.6, 122.5, 120.6, 120.2, 120.1, 120.0, 102.7, 96.9, 89.9, 89.8, 87.6, 87.5, 86.9, 86.3, 86.2, 31.8, 31.7, 30.3, 30.2, 30.1 29.8, 29.7, 29.6, 29.0, 22.8, 14.3, 0.1 (SiMe₃). MALDI-TOF (m/z): C₆₈H₈₈S₅Si₂, calculated value 1121.511 (M+H)⁺, found 1121.271 (M+H)⁺.

Compound 9: Compound **9** was prepared by similar procedure to that for **8**. From **O5** (0.2 g, 0.20 mmol), 5-iodo-2-ethynyl(trimethylsilyl)-3-hexylthiophene **6** (0.17 g, 0.42 mmol, 2.1 eq.), tetrakis(triphenylphosphine) palladium(0) (0.02 g, 0.01 mmol, 3.5 mol%), copper(I) iodide (0.001 g, 0.01 mmol, 3 mol%), **9** was obtained as orange red oil (0.2 g, 68%). 1H NMR (600 MHz, CDCl₃) δ (ppm): 7.05-7.04 (m, 5H, CH thienyl), 6.99 (s, 2H, CH thienyl), 2.70-2.63 (m, 14H, Th-CH₂-C₅H₁₁), 1.66-1.61 (m, 14H, Th-CH₂- CH₂-C₄H₉), 1.33-1.32 (m, 51H), 0.91-0.88 (m, 25H), 0.26 (s, 18H, SiMe₃). ¹³C {¹H} NMR (150 MHz, CDCl₃) δ (ppm): 148.9, 148.7, 148.6, 133.5 (CH thienyl), 133.3 (CH thienyl), 133.2 (CH thienyl), 133.0 (CH thienyl), 123.5, 123.4, 123.3, 123.2, 122.6, 120.6, 120.1, 120.0, 119.9, 102.7, 96.9, 89.9, 87.6, 86.9, 86.3, 31.8, 31.8, 31.7, 30.3, 30.2, 30.1 29.8, 29.7, 29.6, 29.1, 22.8, 14.3, 0.1 (SiMe₃). MALDI–TOF (m/z): C₉₂H₁₁₆S₇Si₂, calculated value 1501.674 (M+H)⁺, found 1501.431 (M+H)⁺.

Synthesis of the thienylethynyl derivatives O3, O5, O7: To a solution of 7 (0.5 g, 0.67 mmol) in DCM (10 mL) and methanol (10 mL) was added potassium carbonate (0.23 g, 1.68 mmol). The reaction mixture was allowed to stir at room temperature for 2h before being poured into water. The aqueous layer was extracted with DCM and the organic extracts were washed with brine. The combined organic layers were dried over anhydrous MgSO₄. The final product was purified by column chromatography using 5% ethyl acetate-hexane mixture to afford O3 (0.36 g, 91%) as orange-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.04 (s, 1H, C<u>H</u> thienyl), 7.02 (s, 1H, C<u>H</u> thienyl), 7.01 (s, 1H, C<u>H</u> thienyl), 3.49 (s, 2H, -C=C<u>H</u>) 2.68-2.64 (m, 6H, C<u>H</u>₂-C₅H₁₁), 1.63-1.60 (m, 6H, CH₂-C<u>H</u>₂-C₄H₉), 1.32-1.30 (m, 25H), 0.90-0.88 (m, 12H) . ¹³C {¹H} NMR (150 MHz, CDCl₃) δ (ppm): 149.3, 148.7, 133.5 (<u>C</u>H thienyl), 133.2 (<u>C</u>H thienyl), 133.0 (<u>C</u>H thienyl), 123.8, 122.1, 120.1, 119.4 119.2, 119.1, 89.6, 87.4, 86.9, 86.3, 84.7, 84.6, 84.0 (-C=<u>C</u>H), 76.4 (-<u>C</u>=CH), 76.1, 31.8, 30.2, 29.7, 29.6, 29.5, 29.1, 29.0, 22.6, 14.3. MALDI-TOF (m/z): C₃₈H₄₄S₃, calculated value 596.260 (M⁺), found 596.642 (M⁺). UV-Vis (1,2-DCE) λ_{max} : 393 nm, ($\epsilon = 5.03 \times 10^4$ M⁻¹ cm⁻¹).

Compound O5: Compound **O5** was prepared by an analogues method to that for **O3**. From **8** (0.18 g 0.16 mmol) and potassium carbonate (0.06 g, 0.4 mmol), **O5** was obtained as orange oil (0.15 g, 94%). ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.05-7.04 (m, 3H, C<u>H</u> thienyl), 7.01 (s, 2H, C<u>H</u> thienyl), 3.49 (s, 2H, -C=C<u>H</u>), 2.70-2.64 (m, 10H, C<u>H</u>₂-C₅H₁₁), 1.66-1.60 (m, 10H, CH₂-C<u>H</u>₂-C₄H₉), 1.32-1.31 (m, 42H), 0.90-0.86 (m, 20H). ¹³C {¹H} NMR (150 MHz, CDCl₃) δ (ppm): 149.3, 148.7, 133.6 (<u>C</u>H thienyl), 133.5 (<u>C</u>H thienyl), 133.3 (<u>C</u>H thienyl), 133.0 (<u>C</u>H thienyl), 132.9 (<u>C</u>H thienyl), 123.4, 123.2, 123.1, 122.9, 122.8, 120.1, 120.0, 119.9, 119.3, 119.2, 89.8, 89.6, 89.5, 87.6, 87.5, 86.9, 86.4, 86.3, 84.6 (-C=<u>C</u>H), 76.4 (-<u>C</u>=CH), 31.8, 30.3, 30.2, 29.8, 29.7, 29.6, 29.5, 29.1, 29.0, 22.8, 14.3. MALDI–TOF (m/z): $C_{62}H_{72}S_5$, calculated value 976.423 (M⁺), found 976.449 (M⁺). UV-Vis (1,2-DCE) λ_{max} : 412 nm, ($\epsilon = 5.72 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$).

Compound O7: Compound **O7** was prepared by an analogues method to that for **O3**. From **9** (0.2 g 0.13 mmol) and potassium carbonate (0.05 g, 0.36 mmol), **O7** was obtained as dark red oil (0.16, 92%). ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.05-7.04 (m, 5H, C<u>H</u> thienyl), 7.01 (s, 2H, C<u>H</u> thienyl), 3.49 (s, 2H, -C=C<u>H</u>), 2.70-2.65 (m, 14H, C<u>H</u>₂-C₅H₁₁), 1.65-1.60 (m, 14H, CH₂- C<u>H</u>₂-C₄H₉), 1.32-1.30 (m, 75H), 0.90-0.87 (m, 29H). ¹³C {¹H} NMR (150 MHz, CDCl₃) δ (ppm): 149.3, 148.7, 133.6 (<u>C</u>H thienyl), 133.3 (<u>C</u>H thienyl), 133.2 (<u>C</u>H thienyl), 133.0 (<u>C</u>H thienyl), 132.9 (<u>C</u>H thienyl), 123.5, 123.4, 123.2, 122.9, 120.1, 120.0, 119.9, 119.8, 119.3, 89.8, 89.7, 89.6, 87.6, 87.0, 86.4, 84.6 (-C=<u>C</u>H), 76.1 (-<u>C</u>=CH), 32.1, 31.8, 30.3, 30.2, 29.8, 29.9, 29.7, 29.6, 29.5, 29.0, 22.9, 22.8, 14.3. MALDI-TOF (m/z): C₈₆H₁₀₀S₇, calculated value 1356.587 (M⁺), found 1356.629 (M⁺). UV-Vis (1,2-DCE) λ_{max} : 432 nm, ($\epsilon = 6.59 \times 10^4$ M⁻¹ cm⁻¹).

Compound 13. A mixture of 12 (0.16 g, 0.14 mmol), phenylacetylene(0.02 g, 0.17 mmol), NaPF₆ (0.03 g, 0.17 mmol) and Et₃N (1 mL) in dry DCM (10 mL) were stirred at room temperature for 16h. The solution was filtered through Schlenk frit containing activated Celite 545 to remove NaCl by-product and unreacted NaPF₆, if any. The solvent was evaporated to dryness. First the residue was washed with diethyl-ether to remove the excess phenylacetylene. Finally it was purified by column chromatography (silica gel) using 30% ethyl acetate-hexane mixtureeluent in inert atmosphere to afford **13** (0.13 g, 79%) as .yellow solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.96-7.94 (m, 10H, Ph of dppe), 7.24-7.2 (m, 5H, Ph of dppe+Ph of phenylacetynyl), 7.14-7.08 (m, 14H, Ph of dppe+Ph of phenylacetynyl), 7.04-6.82 (m, 19H+H, Ph of dppe+Ph of phenylacetylene+CH of thienyl) 2.85-2.71 (m, 6H, CH₂ of dppe+Th-CH₂-C₅H₁₁), 2.60-2.52 (m, 4H, CH₂ of dppe) 1.96-1.93 (m, 2H), 1.26-1.15 (m, 5H) 0.83-0.80 (m, 3H). ¹³C 1 H} NMR (150 MHz, CDCl₃) δ (ppm): 139.4, 135.2, 134.6, 134.1, 129.5, 129.0, 128.5, 127.7, 127.3, 127.2, 127.1, 126.9 (Ru-C=C-), 32, 31.3 (quint. PCH₂PCH₂, ${}^{1}J_{PC} + {}^{3}J_{PC} = 24Hz$, 30.3, 29.9, 29.6, 28.9, 22.9, 14.4. ${}^{31}P \{{}^{1}H\}$ NMR (162 MHz, CDCl₃,) δ (ppm): 54 .8 (s, dppe). FTIR (KBr, cm⁻¹): $\bar{v}(Ru-C=C)= 2025$. HRMS-ESI (m/z): C₆₈H₆₆NP₄SRu, calculated value 1154.2910 (M-Ph+CH₃CN)⁺, found 1154.2993(M- $Ph+CH_3CN)^+$.

Fig. S1b:¹³C{¹H}-NMR (100MHz, CDCl₃) spectrum of **6**

Fig. S1c: DEPT-135 (100MHz, CDCl₃) spectrum of 6

Fig. S2a:¹H-NMR (600MHz, CDCl₃) spectrum of 7

Fig. S2b:¹³C{¹H}-NMR (150MHz, CDCl₃) spectrum of **7**

Fig. S2c: DEPT-135 (150MHz, CDCl₃) spectrum of 7

-3.49

Fig. S3a:¹H-NMR (600MHz, CDCl₃) spectrum of O3

Fig. S4c: DEPT-135 (150MHz, CDCl₃) spectrum of 8

-3.49

Fig. S5a: ¹H-NMR (600MHz, CDCl₃) spectrum of O5

Fig. S5b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O5

-726 7.05 7.04

Fig. S5c:: DEPT-135 (150MHz, CDCl₃) spectrum of O5

-726 7.05 7.04 6.99

Fig. S6a: ¹H-NMR (600MHz, CDCl₃) of 9

Fig. S6b: ¹³C{¹H}-NMR (150MHz, CDCl₃) spectrum of **9**

Fig. S6c: DEPT-135 (150MHz, CDCl₃) spectrum of 9

Fig. S7a: ¹H-NMR (600MHz, CDCl₃) spectrum of O7

Fig. S7b: ¹³C{¹H}-NMR (150MHz, CDCl₃) spectrum of **O7**

Fig. S7c: DEPT-135 (150MHz, CDCl₃) spectrum of O7

Fig. S8a:¹H-NMR (600MHz, CDCl₃) spectrum of 12

Fig. S8c: DEPT-135 (150MHz, CDCl₃) spectrum of 12

Fig. S8d: ³¹P{¹H}-NMR (162MHz, CDCl₃) spectrum of **12**

Fig. S9a: ³¹P{¹H}-NMR (162MHz, CDCl₃) spectrum of **13**

Fig. S9b: ¹³C{¹H}-NMR (150MHz, CDCl₃) spectrum of **13**

Fig. S10a: ¹H-NMR (600MHz, CDCl₃) spectrum of O1-Ru₂

Fig. S10b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O1-Ru₂

Fig. S10c: DEPT-135 (150MHz, CDCl₃) spectrum of O1-Ru₂

Fig. S10d: ${}^{31}P{}^{1}H$ -NMR (162MHz, CDCl₃) spectrum of O1-Ru₂

Fig. S11b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O3-Ru₂

Fig. S11c: DEPT-135 (150MHz, CDCl₃) spectrum of O3-Ru₂

---51.35

Fig. S11d: ${}^{31}P{}^{1}H$ -NMR (162MHz, CDCl₃) spectrum of O3-Ru₂

Fig. S12a: ¹H-NMR (600MHz, CDCl₃) spectrum of O5-Ru₂

Fig. S12b: ¹³C{¹H}-NMR (150MHz, CDCl₃) spectrum of **O5-Ru**₂

Fig. S12c: DEPT-135 (150MHz, CDCl₃) spectrum of O5-Ru₂

Fig. S12d: ³¹P{¹H}-NMR (162MHz, CDCl₃) spectrum of **O5-Ru**₂

Fig. S13a: ¹H-NMR (600MHz, CDCl₃) spectrum of O7-Ru₂

Fig. S13b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O7-Ru₂

Fig. S13c: DEPT-135 (150MHz, CDCl₃) spectrum of O7-Ru₂

Fig. S13d: ${}^{31}P{}^{1}H$ -NMR (162MHz, CDCl₃) spectrum of O7-Ru₂

Fig. S14: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O1-Ru₂

Fig. S15: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O3-Ru₂

Fig. S16: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O5-Ru₂

Fig. S17: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O7-Ru₂

Fig. S18a: ¹H-NMR (600MHz, CDCl₃) spectrum of O1-Ru₂-Ph

Fig. S18b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O1-Ru₂-Ph

Fig. S18c: ${}^{31}P{}^{1}H$ -NMR (162MHz, CDCl₃) spectrum of O1-Ru₂-Ph

Fig. S19a: ¹H-NMR (600MHz, CDCl₃) spectrum of O3-Ru₂-Ph

Fig. S19b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O3-Ru₂-Ph

Fig. S19c: DEPT-135 (150MHz, CDCl₃) spectrum of O3-Ru₂-Ph

Fig. S19d: ${}^{31}P{}^{1}H$ NMR (162MHz, CDCl₃) spectrum of O3-Ru₂-Ph

Fig. S20a: ¹H NMR(600MHz, CDCl₃) spectrum of O5-Ru₂-Ph

Fig. S20b: ${}^{13}C{}^{1}H$ -NMR (150MHz, CDCl₃) spectrum of O5-Ru₂-Ph

Fig. S20c: DEPT-135 (150MHz, CDCl₃) spectrum of O5-Ru₂-Ph

Fig. S20d: ${}^{31}P{}^{1}H$ -NMR (162MHz, CDCl₃) spectrum of O5-Ru₂-Ph

Fig. S21a: ¹H-NMR (600MHz, CDCl₃) spectrum of O7-Ru₂-Ph

Fig. S21b: ${}^{13}C{}^{1}H$ NMR (150MHz, CDCl₃) spectrum of O7-Ru₂-Ph

Fig. S21c: DEPT-135 (150MHz, CDCl₃) spectrum of O7-Ru₂-Ph

Fig. S21d: ${}^{31}P{}^{1}H$ NMR (162MHz, CDCl₃) spectrum of O7-Ru₂-Ph

Fig. S22: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O1-Ru₂-Ph

Fig. S23: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O3-Ru₂-Ph

Fig. S24: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O5-Ru₂-Ph

Fig. S25: ¹H-¹H COSY NMR (600MHz, CDCl₃) spectrum of O7-Ru₂-Ph

1c. Mass Spectrometry

Fig. S26: MALDI-TOF spectrometry of **7** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S27: MALDI-TOF spectrometry of **O3** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S28: MALDI-TOF spectrometry of **8** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S29: MALDI-TOF spectrometry of **O5** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S30: MALDI-TOF spectrometry of **9** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S31: MALDI-TOF spectrometry of **O7** with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S32: MALDI-TOF spectrometry of $O1-Ru_2$ with the simulated (red) and experimental (black) isotopic distribution of the molecular ion peak.

Fig. S33: Mass spectrometry (ESI⁺) of O3-Ru₂

Fig. S34: FTIR spectrum of O1-Ru₂

Fig. S35: FTIR spectrum of O3-Ru₂

Fig. S36: FTIR spectrum of O5-Ru₂

Fig. S37: FTIR spectrum of O7-Ru₂

Fig. S40: FTIR spectrum of O5-Ru₂-Ph

complexes			
Compound	$^{13}C{^{1}H}$	FTIR	$^{31}P{^{1}H}$
	(ppm, Ru- <u>C</u> ≡C)	$(cm^{-1}, \overline{v}(Ru-C\equiv C))$	(ppm, dppe ligand)
O1-Ru ₂	126.9	2042	49.4
O3-Ru ₂	126.9	2023	51.3
O5-Ru ₂	126.9	2024	51.3
O7-Ru ₂	126.9	2024	52.5
O1-Ru ₂ -Ph	126.9	2051	54.0
O3-Ru ₂ -Ph	127.1	2028	54.0
O5-Ru ₂ -Ph	127.1	2023	53.9
O7-Ru ₂ -Ph	126.9	2028	53.9

Table S1. Selected spectroscopic parameter for ruthenium(II) diacetylide

 complexes

1e. CHN analysis

Complex	CHN data		
O1-Ru ₂	DATE 07 12 16 TIME 14 09 21 OPERATOR ID CHEMISTRY RUN 16 ID SKP SSR 2358 WEIGHT 2.052 SIGNALS CARBON 65.72% NR 9450 HYDROGEN 5.56% CR 27407 NITROGEN .20% HR 31449		
O3-Ru ₂	DATE 07 12 16 TIME 14 29 09 OPERATOR ID CHEMISTRY RUN 20 ID SKP SSR 2359 WEIGHT 1.787 SIGNALS CARBON 67.51% HYDROGEN 5.60% NR 9325 CR 25414 NITROGEN54% HR 28875		

O5-Ru ₂	
_	DATE 23 11 16 TIME 14 21 52 OPERATOR ID CHEMISTRY
	RUN 16 ID SKP SSR2277R WEIGHT 1.916
	SIGNALS
	ZR 7324 CARBON 67.31% NR 8167 HYDROGEN 6.06% CR 25449 NITROGEN .35% HR 29479
O7-Ru ₂	DATE 23 04 18 TIME 17 03 43 OPERATOR ID CHEMISTRY
	SIGNALS
	ZR 6576 CARBON 69.64% NR 7487 HYDROGEN 6.25% CR 24972 NITROGEN08% HR 29056

Complex	CHN data		
O1-Ru ₂ -Ph	DATE 11 12 15 TIME 11 52 11 OPERATOR ID CHEMISTRY ID SKP SSR 2262 WEIGHT 2.152 SIGNALS ZR 5151 CARBON 65.68% HYDROGEN 5.58% NITROGEN .29% CARBON .29%		
O3-Ru ₂ -Ph	DATE 11 12 15 TIME 12 33 32 OPERATOR ID CHEMISTRY ID SKP SSR 2277 WEIGHT 2.143 SIGNALS ZR 5105 CARBON 69.29% NR 6175 HYDROGEN 7.64% CR 25904 NITROGEN .25% HR 31458		

2. Photophysical Studies

Fig. S42: Absorbance spectra of a) O1-O7, b) O1-Ru₂ to O7-Ru₂ and c) O1-Ru₂-Ph toO7-Ru₂-Ph in 1,2 DCE in $\sim 1 \times 10^{-5}$ M.

Fig. S43: a) PL spectra of O3-O7, O3-Ru₂ to O7-Ru₂ and O3-Ru₂-Ph to O7-Ru₂-Ph recorded in 1, 2 DCE. b) Visual appearance of O3, O5, O7 in 1,2-DCE under UV illumination at 365 nm.

3. Thermal analysis

3a. TGA analysis

TGA study under N₂ atmosphere clearly indicates that all the diruthenium(II) diacetylide complexes have good thermal stability. The decomposition temperatures for **O1-Ru₂** to **O7-Ru₂** are from 290-332 °C respectively whereas for **O1-Ru₂-Ph** to **O7-Ru₂-Ph** the decomposition temperatures are from 295-340 °C respectively. The decomposition onset is defined by a 40-46 wt% loss for **O1-Ru₂** to **O7-Ru₂** corresponding to the removal of "-C=C-Ru(dppe)₂Cl" moiety from the core of the molecular *wires*.

Fig. S44a: TGA Thermograms of **O1-Ru₂**, **O3-Ru₂**, **O5-Ru₂** and **O7-Ru₂** recorded at a rate of 10 °C/min under N₂ atmosphere

Fig. S44b: TGA Thermograms of O1-Ru₂-Ph, O3-Ru₂-Ph, O5-Ru₂-Ph and O7-Ru₂-Ph recorded at a rate of 10 $^{\circ}$ C/min under N₂ atmosphere

3b. DSC analysis

Fig. S45: DSC Thermograms of a) O1-Ru₂ to O7-Ru₂ and b) O1-Ru₂-Ph to O7-Ru₂-Ph recorded at a rate of 10 $^{\circ}$ C/min under N₂ atmosphere

4. Electrochemical Characterization

Fig. S46: Cyclic voltammograms (CV) of **O3**, **O5** and **O7** in DCM solution using TBAPF₆ as supporting electrolyte, Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100 mV/s.

Fig. S47: Cyclic voltammograms (CV) of O1-Ru₂, O3-Ru₂, O5-Ru₂ and O7-Ru.

Fig. S48: Cyclic voltammograms (CV) of O1-Ru₂-Ph, O3-Ru₂-Ph, O5-Ru₂-Ph and O7-Ru₂-Ph.

5. Crystallographic data

X-ray data collections and refinement. The yellow block shaped single crystals of 12 suitable for X-ray crystallography were obtained by layering hexanes on DCM solution of 12 in a 8 mm dia glass tube. Data were collected at 293 K using graphite-monochromated Mo Ka radiation $(\lambda_{\alpha} = 0.71073 \text{ Å})$ on a Bruker-APEX-II CCD X-ray diffractometer equipped with an Oxford Instruments low-temperature attachment The frames were indexed, integrated, and scaled using the SMART and SAINT software package,¹ and the data were corrected for absorption using the SADABS program.² Pertinent crystallographic data for **12** is summarized in Table **S3**. The title compound crystallizes in the monoclinic space group, $P2_1/c$. Two independent molecules of 12 were located in the asymmetric unit with negligible differences in their metrical parameters. CCDC 1827665 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif. The structure was solved by SHELXT³ and refined with SHELXL⁴ using Olex2 program.⁵The molecular structure was generated by using ORTEP-3 for Windows Version 2.02.6 The hydrogen atoms were included in geometrically calculated positions in the final stages of the refinement and were refined according to the typical riding model. All non-hydrogen atoms were refined with anisotropic thermal parameters.

	12
Empirical formula	C ₆₄ H ₆₃ ClP ₄ RuS
Formula weight	1124.60
Crystal system	Monoclinic
Space group	$P2_1/c$
a, Å	12.6925(11)
b, Å	13.3259(11)
c, Å	32.834(3)
α, deg	90.00
β, deg	95.886(5)
γ, deg	90.00
V, Å ³	5524.2(8)
Ζ	4
ρ_{calcd} , g cm ⁻³	1.352
μ , mm ⁻¹	0.526
F(000)	2336
Reflections	
Collected	55682
independent	13726

Table S2. Crystallographic data and refinement parameters for 12.

observed $[I > 2\sigma(I)]$	6947	
No. of variables	640	
Goodness-of-fit	1.005	
Final R indices $[I>2\sigma(I)]^a$	$R_1 = 0.0684$	
	$wR_2 = 0.1172$	
R indices (all data) ^a	$R_1 = 0.1741$	
	$wR_2 = 0.1459$	
$\overline{{}^{a}R_{1} = \Sigma F_{o} - F_{c} /\Sigma F_{o} \text{ with } F_{o}^{2} > 2\sigma(F_{o}^{2}). \text{ w}R_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma F_{o}^{2} ^{2}]}$		

Table S3. Comparison of electronic communication data in the diruthenium(II) complexes with thienlethynyl bridges.

Compound	$\Delta E_{1/2}(\mathbf{V})$	K _c	Reference
$ \begin{array}{c} Ph \\ C \\ N' \\ N \\ N \\ N \\ PPh_{3} \\ N \\ Ph_{3}P \\ Ph_{3}P \\ N \\ Ph \\ Ph$	0.17, n=2 0.10, n=3	7.4×10 ² 4.9×10 ¹	29
$\begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	0.13, n=2 0.07, n=3	1.6×10 ² 1.5×10 ¹	29
Ph ₂ P PPh ₂ Ph ₂ P PPh ₂ PPh ₂ N n= 1-3	0.13, n=2 single wave, n=3	2.1×10 ²	30
$Ph_{2}P PPh_{2} Ph_{2}$	0.12, n=1 0.17, n=3 0.16, n=5 0.15, n=7	$\begin{array}{c} 1.1 \times 10^2 \\ 7.5 \times 10^2 \\ 5.0 \times 10^2 \\ 3.4 \times 10^2 \end{array}$	this work

6. Estimation of intermetallic distances

From the molecular structure of **12** obtained from single crystal X-ray crystallography, the following bond distances are obtained.

Fig. S49: Intermetallic distances in the synthesized diruthenium(II) organometallic wires.

The calculated intermetallic distance values for the diruthenium(II) organometallic wires may not be absolutely accurate. However, considering the long-range distance, the obtained calculated values are sufficiently informative for our discussion. The distances are very similar as reported for mentioned in the similar thienylethynyl rod-like oligomers.⁷ The intermetallic distances calculated from the theoretical studies of the geometrical optimized structures are of well agreement with the distances measured by the above method.

 Table S4. Intermetallic distances.

Complexes	RuRu distance (Å)	RuRu distance (Å)
		calculated from DFT. ^a
O1-Ru ₂ -Ph	11.6	11.6
O3-Ru ₂ -Ph	24.4	24.3
O5-Ru ₂ -Ph	37.3	35.6
O7-Ru ₂ -Ph	50.2	

^aAs truncated model systems **[O1-Ru₂-Ph-H]**, **[O3-Ru₂-Ph-H]** and **[O5-Ru₂-Ph-H]**, where the "-Ph" ligands of the PPh₃ moiety were replaced by "-H" atoms.

7. UV-vis-NIR measurements

The UV-vis-NIR spectra were measured on a Varian (Model- Cary 5000) UV-vis-NIR spectrometer. For the absorption measurements, the compound was dissolved in 1,2-DCE solution ($\sim 1 \times 10^{-5}$ M). To this solution, an organometallic oxidant [Cp₂Fe][BF₄] in 1,2-DCE was added and the resulting solution was quickly mixed and immediately subjected to UV-vis-NIR measurements. A very weak to negligible IVCT band in the region of 1200-2000 was observed.

Figure S50: Stepwise electrochemical oxidation of representative diruthenium complexes **O5-** \mathbf{Ru}_2 , **O7-Ru**₂, **O5-Ru**₂-**Ph** and **O7-Ru**₂-**Ph** using $[Cp_2Fe]^+$ in 1,2-DCE solvent. The insets show the enlarged plot of the NIR region. Asterisk (*) indicates artifacts.

8. Selected frontier molecular orbitals obtained from DFT calculation

Figure S51. HOMO-1 frontier molecular orbitals of the model complexes [O1-Ru₂-Ph-H], [O3-Ru₂-Ph-H] and [O5-Ru₂-Ph-H].

Figure S52. LUMOs of the model complexes [O1-Ru₂-Ph-H], [O3-Ru₂-Ph-H] and [O5-Ru₂-Ph-H].

9. References

1. SAINT+ Software for CCD Diffractometers, Bruker AXS, Madison, WI, 2000.

2. Sheldrick, G. M. SADABS Program for Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1999.

3. G. M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination *Acta Cryst.*, 2015, **A71**, 3-8.

4. G. M. Sheldrick, Crystal structure refinement with SHELXL Acta Cryst., 2015, C71, 3-8.

5. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program *J. Appl. Cryst.*, 2009, **42**, 339-341.

6. L. J. Farrugia, ORTEP-3 for windows-A version of ORTEP-III with a graphical user interface (GUI) *J. Appl. Cryst.*, 1997, **30**, 565.

7. J. M. Tour Molecular electronics. synthesis and testing of components. Acc. Chem. Res. 2000, **33**, 791-804.