Electronic Supplementary Information

Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with antiproliferative and proapoptotic activity on human ovarian cancer cell lines

Thomas Scattolin^a, Isabella Caligiuri^b, Luciano Canovese^a, Nicola Demitri^c, Roberto Gambari^d, Ilaria Lampronti^d, Flavio Rizzolio^{a,b}, Claudio Santo^a and Fabiano Visentin^{*a}

^aDipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy. E-mail: <u>fvise@unive.ita;</u>

^b Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine - CRO, Aviano, Italy.

^cElettra – Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy, ^dDipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy.

CONTENTS

- Figure S1 : a) Selected portions of the ¹H NMR spectrum of the starting caffeine in CD₃CN at RT; b) Selected portions of the ¹H NMR spectrum of the reaction products obtained in absence of added Na₂CO₃ in CD₃CN at RT; c) Selected portions of the ¹H NMR spectrum of the reaction product 2a obtained in presence of added Na₂CO₃ in CD₃CN at RT.
- Figure S2 : ¹H NMR spectrum of 1:1 mixture of 3c and AgBF₄.
- Figure S3 : ${}^{13}C{H^1}$ NMR spectrum of 1:1 mixture of 3c and AgBF₄.
- Figure S4 : HSQC spectrum of 1:1 mixture of 3c and AgBF₄.
- Figure S5 : HMBC spectrum of 1:1 mixture of 3c and AgBF₄.
- Figure S6 : ¹H NMR spectrum of complex 4a in CDCl₃ at 298K.
- Figure S7 : ${}^{31}P{H^1}$ NMR spectrum of complex 4a in CDCl₃ at 298K.

- Figure S8 : ${}^{13}C{H^1}$ NMR spectrum of complex 4a in CDCl₃ at 298K.
- Figure S9 : HMQC spectrum of complex 4a in CDCl₃ at 298K.
- Figure S10 : ¹H NMR spectrum of complex 4b in CDCl₃ at 298K.
- Figure S11 : ³¹P{H¹} NMR spectrum of complex 4b in CDCl₃ at 298K.
- Figure S12 : ¹H NMR spectrum of complex 5a in D₂O at 298K.
- Figure S13 : ${}^{31}P{H^1}$ NMR spectrum of complex 5a in D₂O at 298K.
- Figure S14 : ${}^{13}C{H^1}$ NMR spectrum of complex 5a in D₂O at 298K.
- Figure S15 : HSQC spectrum of complex 5a in D₂O at 298K.
- Figure S16 : ¹H NMR spectrum of complex 6a in CDCl₃ at 298K.
- Figure S17 : ¹³C{H¹} NMR spectrum of complex 6a in CDCl₃ at 298K.
- Figure S18 : HMQC spectrum of complex 6a in CDCl₃ at 298K.
- Figure S19 : IR spectrum of complex 6a in KBr.
- Figure S20 : ¹H NMR spectrum of complex 8a in CD₃CN at 298K.
- Figure S21 : ¹³C{H¹} NMR spectrum of complex 8a in CD₃CN at 298K.
- Figure S22 : HMQC spectrum of complex 8a in CD₃CN at 298K.
- **Table S1.** Effects of the Pd-complexes on the proliferation of MRC-5 cells. The inhibition of cell growth is represented as IC₅₀
- Figure S23 : (A-E) Apoptosis profile of A2780 cells untreated (C-), treated with cisplatin (C+) and with Pd complexes at different concentrations for 72 h.
- Figure S24 : (A-E) Apoptosis profile of SKOV-3 cells untreated (C-), treated with cisplatin (C+) and with Pd complexes at different concentrations for 72 h.
- Figure S25 : Ellipsoid representation of 4a (A) and 8d (B) crystals ASU contents (50% probability).
- Figure S26 : Ortep representations of complexes 4a (A) and 8d (B). Atom labels in use are reported.

- Figure S27 : Stick representation of overlapped molecular models of 8d and the related triphenylphosphine-(η³-allyl)-(tetramethylimidazolin-2-ylidene)-palladium structure (CCDC Number: 714135).
- Figure S28 : ${}^{31}P{H^1}$ NMR spectra of complex 4b in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.
- Figure S29 : H¹ NMR spectra of complex 6d in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.
- Figure S30 : H^1 NMR spectra of complex 8a in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.
- Table S2: Crystallographic data of complexes 4a and 8d.
- **Table S3 :** Selected bond distances and angles (Å and degrees) for **4a** and **8d** palladium coordination spheres. Naming schemes are reported in Fig.S2.

Fig S1: a) Selected portions of the ¹H NMR spectrum of the starting caffeine in CD₃CN at RT.

- b) Selected portions of the ¹H NMR spectrum of the reaction products obtained in the absence of added Na₂CO₃ in CD₃CN at RT.
- c) Selected portions of the ¹H NMR spectrum of the reaction product **2a** obtained in the presence of added Na₂CO₃ in CD₃CN at RT.

Fig S2: ¹H NMR spectrum of 1:1 mixture of 3c and AgBF₄

Fig S3: ${}^{13}C{H^1}$ NMR spectrum of 1:1 mixture of 3c and AgBF₄

Fig S4: HSQC spectrum of 1:1 mixture of 3c and AgBF₄

Fig S5: HMBC spectrum of 1:1 mixture of **3c** and AgBF₄

Fig S6: ¹H NMR spectrum of complex **4a** in CDCl₃ at 298K.

Fig S7: ${}^{31}P{H^1}$ NMR spectrum of complex 4a in CDCl₃ at 298K.

Fig S8: ${}^{13}C{H^1}$ NMR spectrum of complex 4a in CDCl₃ at 298K.

Fig S9: HMQC spectrum of complex 4a in CDCl₃ at 298K.

Fig S10: ¹H NMR spectrum of complex 4b in CDCl₃ at 298K.

Fig S11: ³¹P{H¹} NMR spectrum of complex **4b** in CDCl₃ at 298K.

Fig S12: ¹H NMR spectrum of complex 5a in D₂O at 298K.

Fig S13: ${}^{31}P{H^1}$ NMR spectrum of complex 5a in D₂O at 298K.

Fig S14: ${}^{13}C{H^1}$ NMR spectrum of complex 5a in D₂O at 298K.

Fig S15: HSQC spectrum of complex 5a in D₂O at 298K.

Fig S16: ¹H NMR spectrum of complex 6a in CDCl₃ at 298K.

Fig S17: ¹³C{H¹} NMR spectrum of complex 6a in CDCl₃ at 298K.

Fig S18: HMQC spectrum of complex 6a in CDCl₃ at 298K.

Fig S19: IR spectrum of complex 6a in KBr

Fig S20: ¹H NMR spectrum of complex **8a** in CD₃CN at 298K.

Fig S21: ${}^{13}C{H^1}$ NMR spectra of complex 8a in CD₃CN at 298K.

Fig S22: HMQC spectra of complex 8a in CD₃CN at 298K.

Complex	MRC-5 (IC ₅₀)
Cisplatin	14 ± 1
4d	> 100
5d	22 ± 6
6b	17 ± 1
8a	> 100

Table S1. Effects of the Pd-complexes on the proliferation of MRC-5 cells. The inhibition of cell growth is represented as IC_{50} .

Fig. S23: (A-E) Apoptosis profile of A2780 cells untreated (C-), treated with cisplatin (C+), and with Pd complexes at different concentrations for 72 h.

Fig. S24: (A-E) Apoptosis profile of SKOV-3 cells untreated (C-), treated with cisplatin (C+), and with Pd complexes at different concentrations for 72 h.

Figure S25. Ellipsoid representation of **8d** (A) and **4a** (B) crystals ASU contents (50% probability).

Figure S26. Ortep representations of complexes 8d (A) and 4a(B). Atom labels in use are reported.

Figure S27. Stick representation of overlapped molecular models of **4a** (blue sticks) and the related triphenylphosphine- $(\eta 3$ -allyl)-(tetramethylimidazolin-2-ylidene)-palladium structure (pink sticks - CCDC Number: 714135).

Figure S28. ${}^{31}P{H^1}$ NMR spectra of complex **4b** in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.

Figure S29. H¹ NMR spectra of complex 6d in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.

Figure S30. H¹ NMR spectra of complex 8a in DMSO-d6/D₂O recorded immediately, 24 and 48 hours after the preparation of the solution at T = 298K.

Compound	<u>8d</u>	<u> </u>		
Formula	PdC ₃₃ H ₃₇ N ₈ O ₄ ·BF ₄	$PdC_{30}H_{32}N_4O_2P \cdot BF_4 \cdot 0.5CH_2Cl_2$		
М	802.91	747.24		
Space group	$P2_{1}/c$	$P2_1/n$		
Crystal system	Monoclinic	Monoclinic		
a/Å	8.200(2)	8.818(2)		
b/Å	13.605(3)	15.614(3)		
c/Å	30.666(6)	23.329(5)		
β/°	96.85(3)	94.90(3)		
$V/Å^3$	3396.7(12)	3200.3(11)		
Ζ	4	4		
T/K	100	100		
$D_c/g \text{ cm}^{-3}$	1.570	1.551		
F(000)	1640	1516		
$\mu(0.7\text{Å})/\text{cm}^{-1}$	5.88	7.31		
Measured Reflections	77120	38281		
Unique Reflections	6783	8782		
R _{int}	0.0311	0.0304		
Obs. Refl.ns $[I \ge 2\sigma(I)]$	6042	8453		
θ_{min} - $\theta_{max}/^{\circ}$	1.32 - 25.77	1.55 - 29.08		
hkl ranges	-10,10; -16,16; -14,38	-11,11; -21,21; -32,32		
R(F ²) (Obs.Refl.ns)	0.1325	0.0276		
wR(F ²) (All Refl.ns)	0.3219	0.0714		
No. Variables	407	449		
Goodness of fit	1.139	1.000		
$\Delta \rho_{\text{max}}$; $\Delta \rho_{\text{min}} / e \text{ Å}^{-3}$	3.95; -4.43	1.20; -0.90		
CCDC Deposition N.	1825947	1825948		

 Table S2.
 Crystallographic data.

Table S3. Selected bond distances and angles (Å and degrees) for 8d and 4apalladium coordination spheres. Naming schemes are reported in Fig.S2.

8d		4a					
Distances		Angles	(°)	Distances		Angles	(°)
	(Å)				(Å)		
Pd_1-C19_2	2.1653(184)	C19_2-Pd_1-C20_2	68.64(58)	Pd_1-C19_2	2.1776(20)	C19_2-Pd_1-C20_2	67.50(8)
Pd_1-C20_2	2.1467(125)	C8_3-Pd_1-C8_4	98.14(51)	Pd_1-C20_2	2.1543(16)	P_4-Pd_1-C8_3	95.17(4)
Pd_1-C8_3	2.0298(123)	C8_3-Pd_1-C20_2	98.97(47)	Pd_1-C8_3	2.0354(15)	C8_3-Pd_1-C20_2	94.62(7)
Pd_1-C8_4	2. 0294(120)	C8_4-Pd_1-C19_2	94.38(58)	Pd_1-P_4	2.3041(6)	P_4-Pd_1-C19_2	102.80(6)