A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant ⁸⁹Zr-immuno-PET agents

Nikunj B. Bhatt^{1†}, Darpan N. Pandya^{1†}, Stephanie Rideout-Danner², Howard D. Gage², Frank C. Marini^{1,3} and Thaddeus J. Wadas^{*1,}

¹Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157

USA.

²Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.

³Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27157 USA.

[†]These authors contributed equally to this work.

*Corresponding author:

Thaddeus J. Wadas, Ph.D.

Assistant Professor of Cancer Biology and Radiology

Wake Forest School of Medicine

Medical Center Blvd.

Winston-Salem, NC 27157

phone: (336) 716-5696

fax: (336) 716-0255

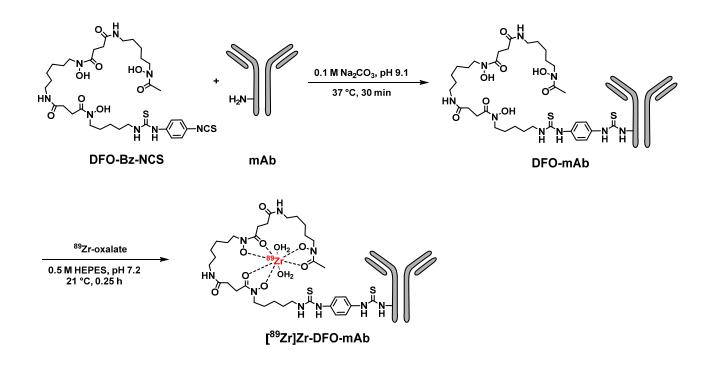

e-mail: twadas@wakehealth.edu

Table of Contents

Section	Page Number
Reagents setup	3
Scheme S1. Conjugation of DFO with mAbs and ⁸⁹ Zr-radiolabeling	4
Conjugation of DFO with mAbs	5
Determination of chelator to antibody ratio	5
Table S1. Chelator to antibody ratio	6
Table S2: Summary of optimized mAb mass used to prepare [89Zr]Zr-DFO-mAbs	7
Figure S1: Quality control of [89Zr]Zr-DFO-cetuximab by radio-SE-HPLC	8
Figure S2: Quality control of [89Zr]Zr-DFO-trastuzumab by radio-SE-HPLC	9
Figure S3: Quality control of [89Zr]Zr-DFO-IgG by radio-SE-HPLC	10
Table S3: <i>In vitro</i> stability study of [⁸⁹ Zr]Zr-DFO-cetuximab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by centrifugal filtration analysis	11
Table S4: <i>In vitro</i> stability study of [⁸⁹ Zr]Zr-DFO-trastuzumab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by centrifugal filtration analysis Figure S4: Stability analysis of [⁸⁹ Zr]Zr-DFO-cetuximab formulated in different buffer-	12
excipient combinations at 21 °C by radio-ITLC Figure S5: Stability analysis of [⁸⁹ Zr]Zr-DFO-trastuzumab formulated in different	13 14
buffer-excipient combinations at 21 °C by radio-ITLC Table S5: <i>In vitro</i> stability study of [⁸⁹ Zr]Zr-DFO-cetuximab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by radio-ITLC analysis	15
Table S6: <i>In vitro</i> stability study of ^{[89} Zr]Zr-DFO-trastuzumab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by radio-ITLC analysis	15
Figure S6: SE-HPLC chromatograms of [⁸⁹ Zr]Zr-DFO-mAbs in saline	16
Figure S7: SE-HPLC chromatograms of [⁸⁹ Zr]Zr-DFO-mAbs in histidine-sucrose	17
Figure S8: SE-HPLC chromatograms of [⁸⁹ Zr]Zr-DFO-mAbs in gentisic acid	18
Figure S9: SE-HPLC chromatograms of [⁸⁹ Zr]Zr-DFO-mAbs in <i>n</i> -acetyl-L-cysteine	19
Table S7: <i>In vitro</i> stability study of [⁸⁹ Zr]Zr-DFO-cetuximab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by SE-HPLC	20
Table S8: <i>In vitro</i> stability study of ^{[89} Zr]Zr-DFO-trastuzumab (saline, gentisic acid, histidine-sucrose, and <i>n</i> -acetyl-L-cysteine) by SE-HPLC	21
Table S9: Serum stability study of [89Zr]Zr-DFO-mAbs	22
Figure S10: Maximum intensity projection PET imaging of [⁸⁹ Zr]Zr-DFO-cetuximab and [⁸⁹ Zr]Zr-DFO-IgG	23
Table S10: Post-PET biodistribution of [89Zr]Zr-DFO-cetuximab and [89Zr]Zr-DFO-IgG	24
References	25

Reagents setup

- 2 M sodium carbonate: Dissolve 10.599 g of sodium carbonate in 35 mL of Milli-Q water and adjust volume to 50 mL with Milli-Q water.
- 20 mM histidine/240 mM sucrose: Dissolve 0.310 g of histidine and 8.215 g of sucrose in 50 mL of Milli-Q water and adjust volume to 100 mL with Milli-Q water, mix well and check the pH. Adjust to 5.5 to 5.7.
- 0.25 M sodium acetate buffer containing 5 mg·mL⁻¹ gentisic acid: Dissolve 3.4 g sodium acetate trihydrate and 0.5 g gentisic acid in 80 mL of Milli-Q water and adjust volume to 100 mL with Milli-Q water, mix well and check the pH. Adjust to 5.5 to 5.7.
- 0.25 M sodium acetate buffer containing 5 mg·mL⁻¹ *n*-acetyl-L-cysteine: Dissolve 3.4 g sodium acetate trihydrate and 0.5 g *n*-acetyl-L-cysteine in 80 mL of Milli-Q water and adjust volume to 100 mL with Milli-Q water.
- 0.25 M sodium acetate buffer containing 0.5 mg·mL⁻¹ *n*-acetyl-L-cysteine: Dissolve 3.4 g sodium acetate trihydrate and 0.05 g *n*-acetyl-L-cysteine in 80 mL of Milli-Q water and adjust volume to 100 mL with Milli-Q water.
- 0.5 M HEPES buffer (pH 7.1 7.3): Mix 20 mL of Milli-Q water with 20 mL of 1 M HEPES solution and check the pH. Adjust to 7.0 to 7.5.
- 20 mM Citric acid (pH 5.0): Dissolve 0.42 g citric acid monohydrate and 1.0 mL of 2 M Na₂CO₃ in 80 mL of Milli-Q water, and adjust volume to 100 mL with Milli-Q water.
- DFO-Bz-NCS solution: Dissolve 1.53 mg of DFO-Bz-NCS in 60 µL of DMSO.
- ZrCl₄: Dissolve 7.87 mg of ZrCl₄ in 80 mL of Milli-Q water, and adjust volume to 100 mL with Milli-Q water.

Supplementary Scheme S1. Modified preparative route used to prepare [⁸⁹Zr]Zr-DFO-mAbs.

Conjugation of DFO with mAbs

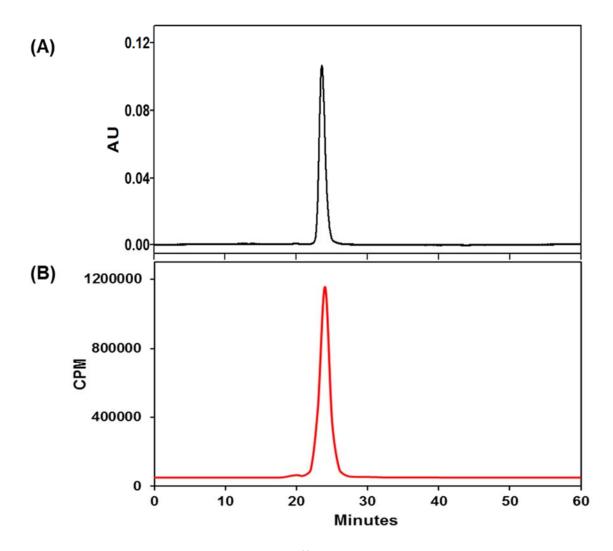
DFO-mAbs were prepared using a reported procedure with modifications.¹ Briefly, mAb (6 mg) was dissolved in saline (600 µl), and the pH adjusted to pH 8.9-9.1 with 0.1 M Na₂CO₃ (60 µL). A five-fold molar excess of DFO-Bz-NCS (153 µg in 6 µL DMSO) was added and the resulting solution was incubated for 30 min. at 37 °C using a thermomixer at 550 r.p.m. To remove non-conjugated DFO-Bz-NCS, DFO-mAb was purified by PD-10 column using saline (0.9% NaCl). The purified DFO-mAb conjugate was stored at 4 °C and used for ⁸⁹Zr-radiochemistry.

Determination of chelator to antibody ratio

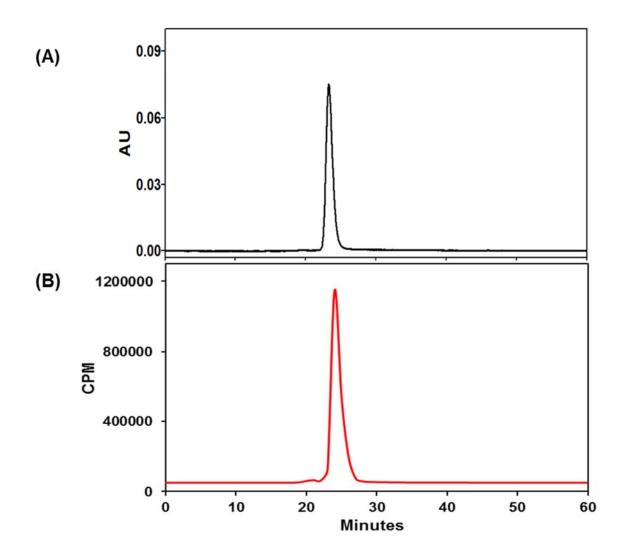
Chelator to antibody ratio was determined by the following reported process.² Briefly, [⁸⁹Zr]Zroxalate (~50 μ Ci in 2-3 μ L1.0 M oxalic acid) was added to the freshly prepared ZrCl₄ (10-fold molar excess to the DFO-mAbs used for this experiment). pH of the reaction mixture was adjusted to 6.8-7.2 by using 2 M Na₂CO₃ and mixture was incubated at room temperature for 3 min. followed by pH adjustment to 6.8-7.2 using 0.5 M HEPES buffer (300 μ L, pH 7.2). 50 μ g of DFO-mAbs conjugate in saline (18.4 μ L) was then added; the resulting mixture was incubated at 21 °C for 20 min. The reaction was quenched with ethylenediaminetetraacetic acid solution (50 μ L, 50 mM EDTA) and incubated for 10 min. The reaction mixture was then spotted on ITLC and developed in 50 mM EDTA (pH 5.0). Finally, the ITLC strip was cut in two parts and the radioactivity (as counts per minute) associated with each part was measured by gamma counting. The chelator to antibody ratio was calculated using the equation below.

Moles of chelator = Moles of
$$ZrCl_4 X \left(\frac{cpm (R_f < 0.5)}{cpm (total)} \right)$$

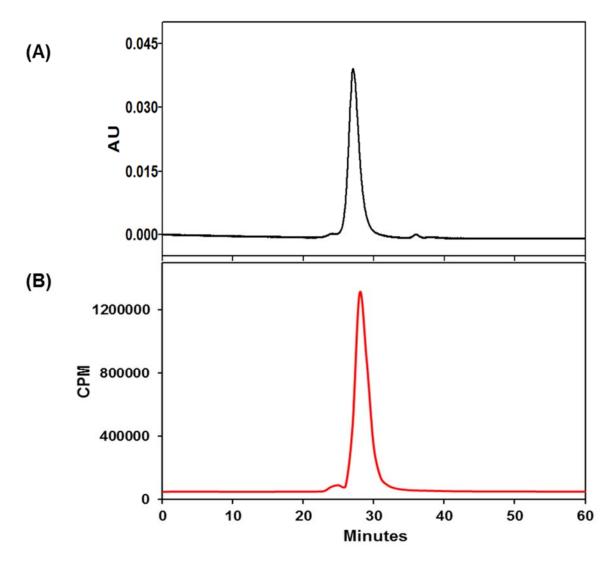
Each experiment was also carried out by using 15- and 20-fold molar excess of ZrCl₄ and was done in triplicate.


Supplementary Table S1. Chelator to antibody ratio obtained using the isotopic dilution method

Antibody	Chelator per antibody
Cetuximab	3.48 ± 0.2
Trastuzumab	2.91 ± 0.1


Conjugates (DFO-mAbs)	Mass of conjugate (µg)	⁸⁹ Zr(Ox) ₂ added (MBq)	Radiochemical purity⁵ by Radio-ITLC (%)	Radiochemical yield° (%)	Radiochemical purity ^c by SE-HPLC (%)	Specific activity (A _s ; MBq µg ^{.1})
	500	55.3	99.9 ± 0.1	98.8 ± 0.2	98.7 ± 0.3	0.109 ± 0.001
DFO- cetuximab	400	55.1	99.8 ± 0.2	98.2 ± 0.3	98.3 ± 0.3	0.134 ± 0.002
	350	50.2	99.9 ± 0.1	97.8 ± 0.4	97.9 ± 0.5	0.139 ± 0.004
	330	49.8	99.9 ± 0.2	97.3 ± 0.4	97.5 ± 0.4	0.144 ± 0.003
	300	48.1	99.8 ± 0.3	95.2 ± 0.5	95.5 ± 0.7	0.151 ± 0.002
	500	55.2	99.8 ± 0.1	98.5 ± 0.3	98.6 ± 0.2	0.108 ± 0.001
	400	54.6	99.9 ± 0.2	98.0 ± 0.2	98.1 ± 0.5	0.131 ± 0.004
DFO- trastuzumab	350	50.4	99.7 ± 0.4	97.6 ± 0.6	97.8 ± 0.4	0.139 ± 0.002
acculance	330	49.9	99.9 ± 0.1	97.5 ± 0.5	97.7 ± 0.5	0.145 ± 0.002
	300	47.9	99.8 ± 0.2	94.9 ± 0.4	95.1 ± 0.6	0.150 ± 0.002

Supplementary Table S2. Summary of optimized mAb mass used to prepare [⁸⁹Zr]Zr-DFO-mAbs^a

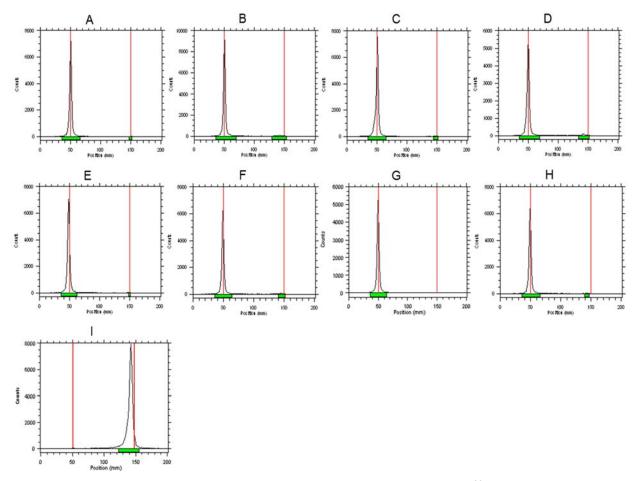

^aDFO-mAbs were labeled with [⁸⁹Zr]Zr-oxalate using 0.5 M HEPES buffer (500 µL, pH 7.2) and *n*-acetyl-L-cysteine (100 uL, 5 mg·mL⁻¹ in 0.5 M sodium acetate, pH 6.8-7.0) at 21 °C for 15 min. ^bUnchelated ⁸⁹Zr was not present in the original reaction mixture as determined by Radio-ITLC. ^cFinal purity and yield reflect the presence of high and low molecular weight species, which were additionally determined by SE-HPLC.

Supplementary Figure S1: Quality control of [⁸⁹Zr]Zr-DFO-cetuximab using radio-HPLC. UV-HPLC chromatogram (220 nm) of DFO-cetuximab (A) compared with radio-HPLC chromatogram of [⁸⁹Zr]Zr-DFO-cetuximab (B).

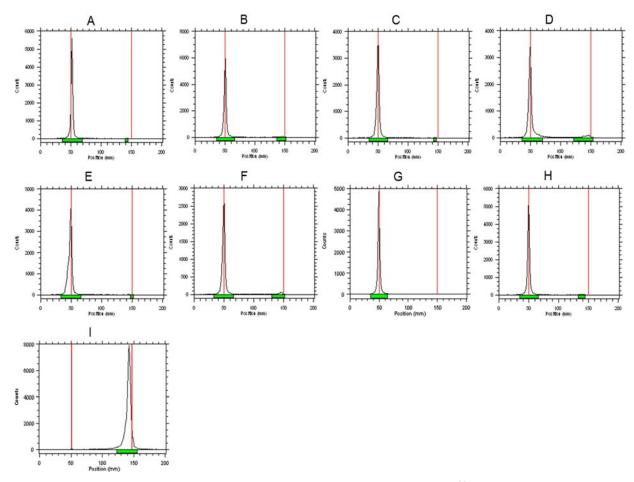
Supplementary Figure S2: Quality control of [⁸⁹Zr]Zr-DFO-trastuzumab using radio-HPLC. UV-HPLC chromatogram (220 nm) of DFO-trastuzumab (A) compared with radio-HPLC chromatogram of [⁸⁹Zr]Zr-DFO-trastuzumab (B).

Supplementary Figure S3: Quality control of [⁸⁹Zr]Zr-DFO-IgG using radio-HPLC. UV-HPLC chromatogram (220 nm) of DFO-IgG (A) compared with radio-HPLC chromatogram of [⁸⁹Zr]Zr-DFO-IgG (B).

Time	Temp				
point	(°C)	0.9 % Saline	20 mM Histidine/ 240 mM Sucrose	0.25 M NaOAc + 5 mg⋅mL ⁻¹ GAª	0.25 M NaOAc + 0.5 mg⋅mL ⁻¹ NAC ^ь
0 h	21	99.9 ± 0.0	99.9 ± 0.2	99.9 ± 0.0	99.9 ± 0.1
	4	99.9 ± 0.0	99.5 ± 0.1	98.9 ± 0.1	99.8 ± 0.0
1 d	21	99.5 ± 0.1	99.1 ± 0.1	99.2 ± 0.1	99.8 ± 0.1
	4	99.2 ± 0.1	98.6 ± 0.1	98.9 ± 0.1	99.8 ± 0.0
3 d	21	99.2 ± 0.1	98.2 ± 0.0	99.0 ± 0.1	99.7 ± 0.0
	4	99.0 ± 0.2	97.8 ± 0.2	98.9 ± 0.0	99.7 ± 0.0
5 d	21	98.7 ± 0.1	96.6 ± 0.1	98.1 ± 0.0	99.8 ± 0.0
	4	98.8 ± 0.2	97.5 ± 0.1	98.8 ± 0.0	99.8 ± 0.0
7 d	21	97.8 ± 0.2	94.9 ± 1.1	97.4 ± 0.1	99.6 ± 0.1


Supplementary Table S3: Chronological stability study of [⁸⁹Zr]Zr-DFO-cetuximab formulated in different buffer-excipient combinations and analyzed by centrifugal filtration analysis

^aGentisic acid. ^b*n*-acetyl-L-cysteine.


Time	Temp	Intact radiotracer %						
point	(°C)	0.9 % Saline	20 mM Histidine/ 240 mM Sucrose	0.25 M NaOAc + 5 mg⋅mL ⁻¹ GAª	0.25 M NaOAc + 0.5 mg⋅mL ⁻¹ NAC			
0 h	21	99.9 ± 0.1	99.9 ± 0.0	99.9 ± 0.2	99.9 ± 0.1			
	4	99.5 ± 0.1	99.9 ± 0.1	98.5 ± 0.0	99.7 ± 0.1			
1 d	21	99.5 ± 0.0	99.4 ± 0.0	99.7 ± 0.0	99.7 ± 0.0			
	4	99.2 ± 0.1	98.5 ± 0.4	98.3 ± 0.0	99.6 ± 0.1			
3 d	21	99.4 ± 0.03	97.3 ± 0.2	98.2 ± 0.1	99.7 ± 0.0			
	4	99.2 ± 0.1	97.2 ± 0.3	98.3 ± 0.3	99.6 ± 0.1			
5 d	21	99.1 ± 0.1	94.2 ± 0.2	97.4 ± 0.2	99.3 ± 0.2			
	4	98.9 ± 0.1	96.1 ± 0.1	98.2 ± 0.0	99.4 ± 0.3			
7 d	21	98.5 ± 0.0	92.5 ± 0.5	96.7 ± 0.4	98.6 ± 0.6			

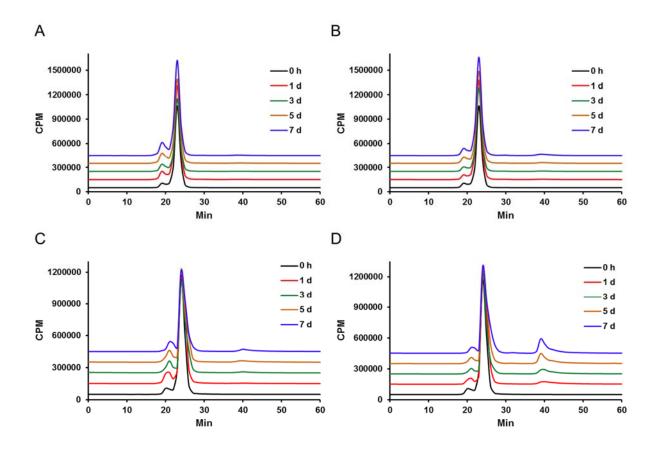
Supplementary Table S4: Chronological stability study of [⁸⁹Zr]Zr-DFO-trastuzumab formulated in different buffer-excipient combinations and analyzed by centrifugal filtration analysis

^aGentisic acid. ^b*n*-acetyl-L-cysteine.

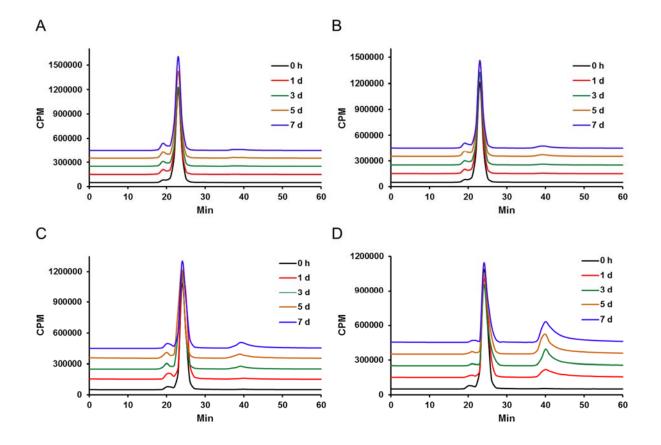
Supplementary Figure S4: Chronological stability analysis of [⁸⁹Zr]Zr-DFO-cetuximab formulated in different buffer-excipient combinations at 21 °C by radio-ITLC. 0.9% saline (A) 0 h, (B) 7 d; 20 mM histidine/240 mM sucrose (C) 0 h, (D) 7 d; 0.25 M sodium acetate buffer containing gentisic acid (5 mg·mL⁻¹) (E) 0 h, (F) 7 d; 0.25 M sodium acetate buffer containing *n*-acetyl-L-cysteine (0.5 mg·mL⁻¹) (G) 0 h, (H) 7 d; (I) [⁸⁹Zr]Zr-Oxalate. In this ITLC-SG system, free ⁸⁹Zr eluted with the solvent front (R_f ~ 1), while [⁸⁹Zr]Zr-DFO-cetuximab remained at the origin (R_f ~ 0).

Supplementary Figure S5: Chronological stability analysis of [⁸⁹Zr]Zr-DFO-trastuzumab formulated in different buffer-excipient combinations at 21 °C by radio-ITLC. 0.9% saline (A) 0 h, (B) 7 d; 20 mM histidine/240 mM sucrose (C) 0 h, (D) 7 d; 0.25 M sodium acetate buffer containing gentisic acid (5 mg·mL⁻¹) (E) 0 h, (F) 7 d; 0.25 M sodium acetate buffer containing *n*-acetyl-L-cysteine (0.5 mg·mL⁻¹) (G) 0 h, (H) 7 d; (I) [⁸⁹Zr]Zr-Oxalate. In this ITLC-SG system, free ⁸⁹Zr eluted with the solvent front (R_f ~ 1), while [⁸⁹Zr]Zr-DFO-trastuzumab remained at the origin (R_f ~ 0).

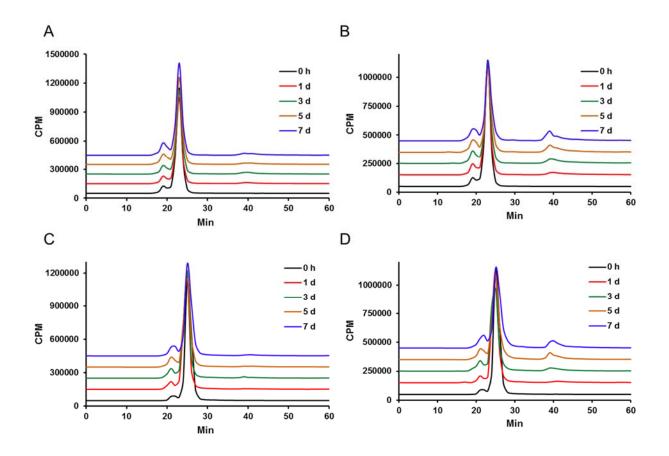
Supplementary Table S5: Chronological stability study of [⁸⁹Zr]Zr-DFO-cetuximab at 21 °C formulated in different buffer-excipient combinations and analyzed by Radio-ITLC

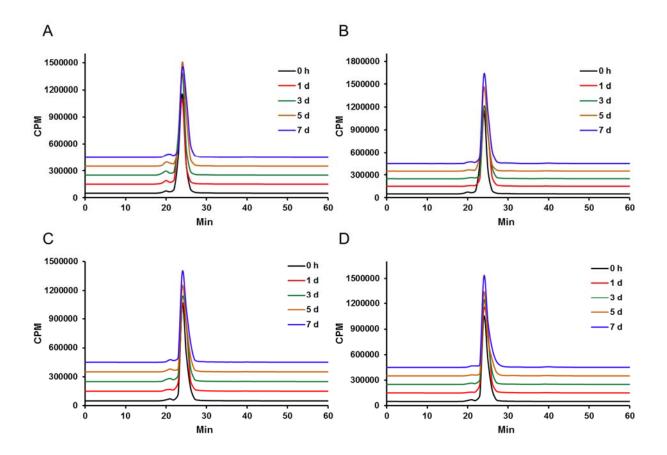

Time		Intact radi	Intact radiotracer %				
point	0.9 % Saline	20 mM Histidine/ 240 mM Sucrose	0.25 M NaOAc + 5 mg⋅mL ⁻¹ GAª	0.25 M NaOAc + 0.5 mg⋅mL ⁻¹ NAC ^ь			
0 h	99.7 ± 0.1	99.6 ± 0.2	99.9 ± 0.0	100			
1 d	99.1 ± 0.4	98.9 ± 0.3	99.2 ± 0.1	99.8 ± 0.2			
3 d	98.3 ± 0.2	97.4 ± 0.1	98.4 ± 0.3	99.6 ± 0.3			
7 d	97.2 ± 0.3	96.5 ± 0.5	97.5 ± 0.7	99.4 ± 0.1			

^aGentisic acid. ^b*n*-acetyl-L-cysteine.


Supplementary Table S6: Chronological stability study of [⁸⁹Zr]Zr-DFO-trastuzumab at 21 °C formulated in different buffer-excipient combinations and analyzed by Radio-ITLC

Time		Intact radiotracer %						
point	0.9 % Saline	20 mM Histidine/ 240 mM Sucrose	0.25 M NaOAc + 5 mg⋅mL⁻¹ GAª	0.25 M NaOAc + 0.5 mg⋅mL ⁻¹ NAC ^I				
0 h	99.6 ± 0.2	99.7 ± 0.1	99.8 ± 0.1	100				
1 d	99.3 ± 0.3	98.1 ± 0.2	98.9 ± 0.3	99.6 ± 0.1				
3 d	98.4 ± 0.4	95.4 ± 0.4	97.3 ± 0.5	98.9 ± 0.3				
7 d	97.1 ± 0.2	92.1 ± 1.1	95.9 ± 0.3	98.4 ± 0.1				


^aGentisic acid. ^b*n*-acetyl-L-cysteine.


Supplementary Figure S6: Chronological stability analysis of [89Zr]Zr-DFO-mAbs preserved in 0.9% saline. (A) [89Zr]Zr-DFO-cetuximab at 4°C, (B) [89Zr]Zr-DFO-cetuximab at (C) [89Zr]Zr-DFO-trastuzumab at 4°C and (D) [89Zr]Zr-DFO-trastuzumab at 21°C. 21°C, Chromatograms were generated using the SEC methods described in the Supplementary Information. In the size exclusion chromatogram the radiopharmaceutical product was observed to elute at 23-30 min. while high-molecular weight and low-molecular weight species observed to elute 18-22 min. and 38-46 min., respectively. were at An ethylenediaminetetraacetic acid (EDTA) blank injection was run after each SEC injection of [⁸⁹Zr]Zr-DFO-mAbs to ensure that any free ⁸⁹Zr was observed (⁸⁹Zr-EDTA, *t_R*: 38-40 min.).

Supplementary Figure S7: Chronological stability analysis of [⁸⁹Zr]Zr-DFO-mAbs preserved in 20 mM histidine/240 mM sucrose. (A) [⁸⁹Zr]Zr-DFO-cetuximab at 4°C, (B) [⁸⁹Zr]Zr-DFO-cetuximab at 21°C, (C) [⁸⁹Zr]Zr-DFO-trastuzumab at 4°C and (D) [⁸⁹Zr]Zr-DFO-trastuzumab at 21°C. Chromatograms were generated using the SEC methods described in the Supplementary Information. In the size exclusion chromatogram the radiopharmaceutical product was observed to elute at 23-30 min. while high-molecular weight and low-molecular weight species were observed to elute at 18-22 min. and 38-46 min., respectively. An ethylenediaminetetraacetic acid (EDTA) blank injection was run after each SEC injection of [⁸⁹Zr]Zr-DFO-mAbs to ensure that any free ⁸⁹Zr was observed (⁸⁹Zr-EDTA, t_R : 38-40 min.).

Supplementary Figure S8: Chronological stability analysis of [⁸⁹Zr]Zr-DFO-mAbs preserved in 0.25 M sodium acetate buffer containing gentisic acid. (A) [⁸⁹Zr]Zr-DFO-cetuximab at 4°C, (B) [⁸⁹Zr]Zr-DFO-cetuximab at 21°C, (C) [⁸⁹Zr]Zr-DFO-trastuzumab at 4°C and (D) [⁸⁹Zr]Zr-DFO-trastuzumab at 21°C. Chromatograms were generated using the SEC methods described in the Supplementary Information. In the size exclusion chromatogram the radiopharmaceutical product was observed to elute at 23-30 min. while high-molecular weight and low-molecular weight species were observed to elute at 18-22 min. and 38-46 min., respectively. An ethylenediaminetetraacetic acid (EDTA) blank injection was run after each SEC injection of [⁸⁹Zr]Zr-DFO-mAbs to ensure that any free ⁸⁹Zr was observed (⁸⁹Zr-EDTA, t_R : 38-40 min.).

Supplementary Figure S9: Chronological stability analysis of [⁸⁹Zr]Zr-DFO-mAbs preserved in 0.25 M sodium acetate buffer containing *n*-acetyl-L-cysteine. These radiopharmaceuticals were prepared without using Na₂CO₃. The presence of high-and low-molecular weight species is significantly reduced, and initial chromatograms (t = 0 h) demonstrate that elimination of this procedural step does not diminish radiopharmaceutical integrity. (A) [⁸⁹Zr]Zr-DFO-cetuximab at 4°C, (B) [⁸⁹Zr]Zr-DFO-cetuximab at 21°C, (C) [⁸⁹Zr]Zr-DFO-trastuzumab at 4°C and (D) [⁸⁹Zr]Zr-DFO-trastuzumab at 21°C. Chromatograms were generated using the SEC methods described in the Supplementary Information. In the size exclusion chromatogram the radiopharmaceutical product was observed to elute at 23-30 min. while high-molecular weight and low-molecular weight species were observed to elute at 18-22 min. and 38-46 min., respectively. An ethylenediaminetetraacetic acid (EDTA) blank injection was run after each SEC injection of [⁸⁹Zr]Zr-DFO-mAbs to ensure that any free ⁸⁹Zr was observed (⁸⁹Zr-EDTA, *t_R*: 38-40 min.).

							Spec	ies %					
Time	Temp.	-	0.9 % Saline		20 mM Hi	stidine/240 mM	A Sucrose	0.25 M N	aOAc + 5 mg·	ng·mL ⁻¹ GA ^a 0.25 M NaOAc + 0.5 mg·mL ⁻¹ NA			mL ⁻¹ NAC ^ь
point	(°C)	HMW℃	Intact radiotracer	LMW ^a	HMW°	Intact radiotracer	LMW ^d	HMMc	Intact radiotracer	LMW ^d	HMW℃	Intact radiotracer	LMW ^d
0 h	21	6.0	94.0	0.0	3.5	96.5	0.0	7.5	92.5	0.0	2.6	97.4	0.0
	4	9.9 ± 1.7	89.5 ± 1.6	0.7 ± 0.1	6.5 ± 0.1	93.0 ± 0.1	0.7 ± 0.1	9.5 ± 0.8	87.2 ± 0.8	3.4 ± 0.1	4.2 ± 0.2	95.6 ± 0.1	0.3 ± 0.1
1 d	21	5.3 ± 0.3	93.7 ± 0.2	1.1 ± 0.1	4.8 ± 0.1	94.1 ± 0.2	1.2 ± 0.1	9.2 ± 0.4	84.9 ± 0.3	6.0 ± 0.7	2.1 ± 0.4	97.3 ± 0.2	0.6 ± 0.0
	4	10.9 ± 1.2	88.4 ± 1.3	0.8 ± 0.1	6.7 ± 0.1	92.0 ± 0.1	1.5 ± 0.1	10.1 ± 0.1	84.7 ± 0.1	5.3 ± 0.2	4.3 ± 0.3	95.3 ± 0.3	0.3 ± 0.0
3 d	21	5.8 ± 0.1	92.9 ± 0.1	1.3 ± 0.1	5.3 ± 0.1	92.3 ± 0.3	2.4 ± 0.1	11.6 ± 0.5	77.7 ± 0.6	10.8 ± 1.1	2.1 ± 0.1	97.3 ± 0.0	0.6 ± 0.1
	4	12.0 ± 0.1	87.0 ± 0.2	1.1 ± 0.1	7.4 ± 0.1	90.5 ± 0.1	2.3 ± 0.2	11.8 ± 0.6	82.4 ± 1.0	5.9 ± 1.6	4.7 ± 0.4	95.0 ± 0.4	0.4 ± 0.0
5 d	21	6.8 ± 0.3	91.2 ± 0.2	2.1 ± 0.1	5.9 ± 0.1	89.8 ± 0.5	4.4 ± 0.4	13.1 ± 0.1	73.5 ± 0.8	13.5 ± 0.8	1.9 ± 0.1	97.5 ± 01	0.6 ± 0.0
	4	13.4 ± 0.4	85.3 ± 0.4	1.4 ± 0.1	7.6 ± 0.1	89.5 ± 0.1	3.1 ± 0.1	13.3 ± 0.4	80.8 ± 0.8	6.0 ± 0.5	4.6 ± 0.1	95.1 ± 0.1	0.4 ± 0.0
7 d	21	7.2 ± 0.3	89.6 ± 0.2	3.3 ± 0.1	6.2 ± 0.2	87.5 ± 0.6	6.4 ± 0.4	12.9 ± 0.1	71.5 ± 0.3	15.7 ± 0.1	2.1 ± 0.1	97.2 ± 0.1	0.8 ± 0.1

Supplementary Table S7: Summary of SEC data describing the chronological stability of [⁸⁹Zr]Zr-DFO-cetuximab formulated in different buffer-excipient combinations

^aGentisic acid. ^b*n*-acetyl-L-cysteine. ^cHigh-molecular weight, radioactive protein species. ^dLow-molecular weight, radioactive protein species, or unchelated ⁸⁹Zr.

							Spec	ies %					
Time	Temp.		0.9 % Saline		20 mM Hi	stidine/240 ml	M Sucrose	0.25 M N	laOAc + 5 mg∙	ng⋅mL ⁻¹ GAª 0.25 M NaOAc + 0.5 mg⋅mL ⁻¹ N			mL ⁻¹ NAC [♭]
point	(°C)	HMW°	Intact radiotracer	LMW ^d	HMW°	Intact radiotracer	LMW ^d	HMW℃	Intact radiotracer	LMW ^d	HMW℃	Intact radiotracer	LMW ^d
0 h	21	7.7	92.3	0.0	4.6	95.4	0.0	5.6	94.4	0.0	2.7	97.3	0.0
	4	10.5 ± 1.3	87.7 ± 1.0	1.8 ± 0.4	6.1 ± 0.7	91.2 ± 0.6	2.7 ± 0.1	7.6 ± 0.4	90.2 ± 0.3	2.1 ± 0.1	3.5 ± 0.9	96.3 ± 0.9	0.3 ± 0.0
1 d	21	5.9 ± 0.1	87.4 ± 0.1	6.6 ± 0.1	2.7 ± 0.2	82.7 ± 0.7	14.7 ± 1.1	6.1 ± 0.2	89.9 ± 0.1	4.1 ± 0.4	2.0 ± 0.4	97.6 ± 0.2	0.5 ± 0.0
	4	12.5 ± 0.3	84.9 ± 0.1	2.6 ± 0.3	5.9 ± 0.4	86.6 ± 0.6	7.4 ± 0.1	9.5 ± 0.3	87.5 ± 0.2	2.9 ± 0.1	3.3 ± 0.1	96.5 ± 0.1	0.3 ± 0.0
3 d	21	5.6 ± 0.1	84.9 ± 0.1	9.5 ± 0.1	2.3 ± 0.1	71.3 ± 0.2	26.5 ± 0.4	10.3 ± 0.7	82.2 ± 0.2	7.6 ± 0.6	2.0 ± 0.1	97.5 ± 0.0	0.5 ± 0.1
	4	14.6 ± 0.2	81.4 ± 0.2	4.4 ± 0.1	6.1 ± 0.5	81.6 ± 0.6	12.4 ± 0.2	12.9 ± 0.1	83.8 ± 0.1	3.2 ± 0.1	3.4 ± 0.4	96.2 ± 0.4	0.3 ± 0.0
5 d	21	5.6 ± 0.1	79.5 ± 1.1	14.9 ± 1.1	2.6 ± 0.3	62.6 ± 0.2	34.9 ± 0.1	13.3 ± 0.1	76.2 ± 0.1	10.5 ± 0.2	1.7 ± 0.1	97.6 ± 0.1	0.7 ± 0.1
	4	13.1 ± 0.2	80.3 ± 0.9	6.6 ± 1.0	6.4 ± 0.3	78.4 ± 0.2	15.3 ± 0.1	12.4 ± 0.1	84.1 ± 0.6	3.6 ± 0.6	2.9 ± 0.1	96.7 ± 0.1	0.4 ± 0.1
7 d	21	6.7 ± 0.1	73.8 ± 1.2	19.5 ± 1.4	3.2 ± 0.2	57.1 ± 0.2	39.8 ± 0.1	13.2 ± 0.7	73.9 ± 0.6	12.9 ± 1.2	2.1 ± 0.1	97.1 ± 0.2	0.9 ± 0.1

Supplementary Table S8: Summary of SEC data describing the chronological stability of [⁸⁹Zr]Zr-DFO-trastuzumab formulated in different buffer-excipient combinations

^aGentisic acid. ^b*n*-acetyl-L-cysteine. ^cHigh-molecular weight, radioactive protein species. ^dLow-molecular weight, radioactive protein species, or unchelated ⁸⁹Zr.

Time point	[⁸⁹ Zr]Zr-	DFO-cetuximab	[89Zr]Zr-DFO-trastuzumab			
	% Intact	% Unchelated ⁸⁹ Zr	% Intact	% Unchelated ⁸⁹ Zr		
0 h	99.9	0.1	99.9	0.1		
1 d	99.5 ± 0.1	0.4 ± 0.1	99.5 ± 0.1	0.5 ± 0.1		
3 d	99.2 ± 0.2	0.9 ± 0.1	99.4 ± 0.1	0.6 ± 0.2		
5 d	99.1 ± 0.5	1.0 ± 0.6	99.3 ± 0.2	0.7 ± 0.1		
7 d	98.9 ± 0.5	1.1 ± 0.3	99.3 ± 0.3	0.7 ± 0.1		

Supplementary Table S9: Chronological <i>in vitro</i> serum stability study data of [⁸⁹ Zr]Zr-DFO
-mAbs maintained at 37°C (n = 3 each radiopharmaceutical)

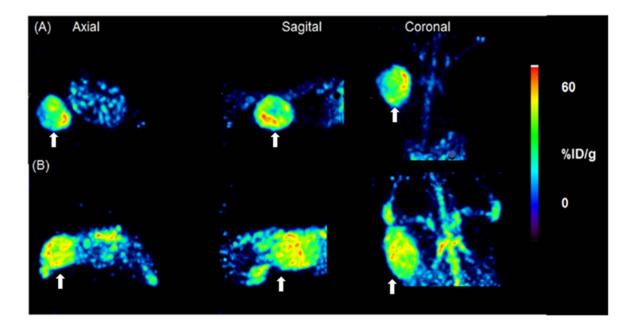


Figure S10. Maximum intensity projection PET images of two mice injected with (A) [⁸⁹Zr]Zr-DFO-cetuximab or (B) [⁸⁹Zr]Zr-DFO-IgG. All images were acquired in one bed position and are equally scaled. Tumors are indicated by white arrows.

Tissue/Organ	[⁸⁹ Zr]Zr-DFO-Cetuximab	[⁸⁹ Zr]Zr-DFO-lgG
Blood	0.4 ± 0.1	4.5 ± 0.3
Heart	1.2 ± 0.1	2.3 ± 0.1
Lung	2.5 ± 0.2	5.2 ± 0.4
Liver	11.8 ± 0.9	13.7 ± 0.9
Small intestine	3.3 ± 0.5	3.9 ± 0.6
Large intestine	1.4 ± 0.2	1.6 ± 0.2
Kidney	3.2 ± 0.3	4.7 ± 0.3
Spleen	5.4 ± 0.4	6.8 ± 0.4
Pancreas	1.0 ± 0.0	1.5 ± 0.1
Stomach	0.7 ± 0.1	0.8 ± 0.1
Muscle	0.3 ± 0.1	0.5 ± 0.1
Fat	0.7 ± 0.1	0.8 ± 0.2
Bone	12.8 ± 1.7	15.2 ± 1.9
Tumor (+)	35.1 ± 1.8	11.4 ± 1.2

Supplementary Table S10: Post-PET biodistribution (%ID/g) of [⁸⁹Zr]Zr-DFO-cetuximab and [⁸⁹Zr]Zr-DFO-IgG in selected organs at 144 h p.i.

References

- Vosjan MJWD, Perk LR, Visser GWM, Budde M, Jurek P, Kiefer GE, Van Dongen GAMS. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate *p*-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 2010; 5: 739-43.
- Kukis DL, DeNardo GL, DeNardo SJ, Mirick GR, Miers LA, Greiner DP, Meares CF. Effect of the Extent of Chelate Substitution on the Immunoreactivity and Biodistribution of 2IT-BAT-Lym-1 Immunoconjugates. Cancer Res. 1995; 55: 878-84.