Carbonyl and Ester C-O Bond Hydrosilylation Using K⁴-Diimine Nickel Catalysts

Electronic Supplementary Information

Christopher L. Rock, Thomas L. Groy, and Ryan J. Trovitch*

School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287

ryan.trovitch@asu.edu

	(^{iPr2PPr} DI)Ni	(^{tBu2PPr} DI)Ni	
chemical formula	$C_{22}H_{44}N_2NiP_2$	$C_{26}H_{54}N_2NiP_2$	
formula weight	459.26	515.36	
crystal dimensions	0.253 x 0.182 x 0.104	0.228 x 0.193 x 0.137	
crystal system	triclinic	monoclinic	
space group	P -1	C 1 2/c 1	
a (Å)	9.0477(5)	13.1585(5)	
<i>b</i> (Å)	10.1518(6)	17.2832(7)	
<i>c</i> (Å)	15.4698(9)	12.2496(5)	
α (deg)	94.4200(10)	90	
β (deg)	100.1970(10)	91.5308(6)	
γ (deg)	115.7230(10)	90	
V (Å ³)	1240.76(12)	2784.82(19)	
Z	2	4	
T (°C)	123.(2)	123.(2)	
pcalcd (g cm ⁻³)	1.229	1.229	
μ (mm ⁻¹)	0.921	0.828	
reflections collected	10079	11141	
data/restraints/parameters	4368/0/254	2458/0/148	
$R_1 \left[I > 2\sigma(I) \right]$	0.0416	0.0370	
wR ₂ (all data)	0.1071	0.0957	
Goodness-of-fit	1.070	1.095	
Largest peak, hole (eÅ ⁻³)	0.859, -0.246	1.027, -0.193	

Table S1. Crystallographic Data for $({}^{iPr2PPr}DI)Ni$ (2) and $({}^{tBu2PPr}DI)Ni$ (3).

Figure S1. The molecular structure of (^{iPr2PPr}DI)Ni (2) shown at 30% probability ellipsoids. Hydrogen atoms omitted for clarity.

Table S2. Metrical parameters for $(^{iPr2PPr}DI)Ni$ (2).

Ni1-N2 1.9	931(2)	N1-C2 1.3	350(3)	C8-C10 1.5	37(4)
Ni1-N1 1.9	33(2)	N1-C5 1.4	467(3)	C11-C13 1.5	21(4)
Ni1-P1 2.1	455(7)	N2-C3 1.3	350(3)	C11-C12 1.5	29(4)
Ni1-P2 2.1544(7)		N2-C14 1.4	N2-C14 1.468(3)		12(4)
P1-C7 1.848(3)		C1-C2 1.508(4)		C15-C16 1.528(4)	
P1-C11 1.861(3)		C2-C3 1.420(4)		C17-C19 1.531(4)	
P1-C8 1.863(3)		C3-C4 1.506(4)		C17-C18 1.536(4)	
P2-C16 1.8	350(3)	C5-C6 1.515(4)		C20-C21 1.523(4)	
P2-C20 1.8	359(3)	C6-C7 1.5	530(4)	C20-C22 1.5	27(4)
P2-C17 1.8	361(3)	C8-C9 1.5	534(4)		
NO NI 1 NI	82.46(0)	C20 D2 N11	112 20(0)	C(C7 D1	111 04(10)
N2-N11-N1	82.46(9)	C20-P2-N11	112.30(9)	$C_0 - C_1 - P_1$	111.04(18)
N2-N11-P1	130.15(0)	C1/-P2-N11	124.45(9)	C9-C8-C10	109.3(2)
NI-NII-PI	97.54(7)	C2-NI-C5	116.1(2)	C9-C8-P1	109.6(2)
N2-N11-P2	96.12(6)	C2-N1-N11	113.92(17)	C10-C8-P1	116.0(2)
N1-Ni1-P2	133.06(6)	C5-N1-Ni1	128.48(17)	C13-C11-C12	109.7(3)
P1-Ni1-P2	113.80(3)	C3-N2-C14	116.0(2)	C13-C11-P1	109.86(19)
C7-P1-C11	102.27(12)	C3-N2-Ni1	113.90(17)	C12-C11-P1	109.44(19)
C7-P1-C8	101.69(13)	C14-N2-Ni1	128.30(17)	N2-C14-C15	113.8(2)
C11-P1-C8	103.44(13)	N1-C2-C3	114.6(2)	C14-C15-C16	112.2(2)
C7-P1-Ni1	110.71(9)	N1-C2-C1	121.9(2)	C15-C16-P2	110.89(18)
C11-P1-Ni1	114.01(9)	C3-C2-C1	123.5(2)	C19-C17-C18	109.8(2)
C8-P1-Ni1	122.31(9)	N2-C3-C2	114.4(2)	C19-C17-P2	109.83(18)
C16-P2-C20	102.47(13)	N2-C3-C4	122.3(2)	C18-C17-P2	115.35(19)
C16-P2-C17	101.08(12)	C2-C3-C4	123.3(2)	C21-C20-C22	110.6(2)
C20-P2-C17	103.87(12)	N1-C5-C6	114.2(2)	C21-C20-P2	110.15(19)
C16-P2-Ni1	110.10(9)	C5-C6-C7	113.0(2)	C22-C20-P2	109.2(2)

Figure S2. The molecular structure of (^{tBu2PPr}DI)Ni (3) shown at 30% probability ellipsoids. Hydrogen atoms omitted for clarity.

Table S3. Metrical	parameters for	(^{tBu2PPr} DI)Ni (3).
--------------------	----------------	-------------------------	-------	---	----

Ni1-N1	1.9	582(17)	N1-C2 1.3	339(3)	C6-C8 1.5	534(3)
Ni1-N1A	i1-N1A 1.9582(17)		N1-C3 1.4	468(3)	C6-C7 1.5	534(3)
Ni1-P1A 2.2261(5)		C1-C2 1.5	509(3)	C10-C11 1.531(3)		
Ni1-P1 2.2262(5)		C2-C2A 1.4	C2-C2A 1.423(4)		C10-C13 1.538(3)	
P1-C5 1.868(2)		C3-C4 1.5	C3-C4 1.515(3)		C10-C12 1.540(3)	
P1-C10 1.908(2)		C4-C5 1.529(3)				
P1-C6 1.910(2)		C6-C9 1.532(3)				
N1-Ni1-N1	А	80.53(10)	C6-P1-Ni1	108.40(7)	C9-C6-C7	107.86(17)
N1-Ni1-P1	A	123.57(5)	C2-N1-C3	116.97(16)	C8-C6-C7	107.16(17)
N1A-Ni1-P	P1A	94.34(5)	C2-N1-Ni1	115.16(14)	C9-C6-P1	115.97(14)
N1-Ni1-P1		94.34(5)	C3-N1-Ni1	126.71(13)	C8-C6-P1	108.68(14)
N1A-Ni1-P	P 1	123.57(5)	N1-C2-C2A	114.28(11)	C7-C6-P1	107.75(14)
P1A-Ni1-P	1	131.35(3)	N1-C2-C1	122.00(19)	C11-C10-C13	109.44(17)
C5-P1-C10)	99.91(9)	C2A-C2-C1	123.71(12)	C11-C10-C12	107.69(17)
C5-P1-C6		103.72(9)	N1-C3-C4	112.28(16)	C13-C10-C12	106.78(16)
C10-P1-C6		107.53(9)	C3-C4-C5	112.66(18)	C11-C10-P1	109.93(14)
C5-P1-Ni1		106.77(7)	C4-C5-P1	112.15(14)	C13-C10-P1	104.94(13)
C10-P1-Ni	1	127.84(6)	C9-C6-C8	109.08(18)	C12-C10-P1	117.80(14)

Characterization of Newly Prepared Complexes:

Figure S3. ¹H NMR spectrum of $^{tBu2PPr}DI$ in benzene- d_6 .

Figure S4. ¹³C NMR spectrum of ^{tBu2PPr}DI in benzene-*d*₆.

Figure S5. ³¹P NMR spectrum of $^{tBu2PPr}DI$ in benzene- d_6 .

Figure S6. ¹H NMR spectrum of ($^{iPr2PPr}DI$)Ni (2) in benzene- d_6 .

Figure S7. ¹³C NMR spectrum of (^{iPr2PPr}DI)Ni (2) in benzene-*d*₆.

Figure S8. ³¹P NMR spectrum of ($^{iPr2PPr}DI$)Ni (2) in benzene- d_6 .

Figure S9. ¹H NMR spectrum of ($^{(Bu2PPr}DI$)Ni (3) in benzene- d_6 .

Figure S10. ¹³C NMR spectrum of (^{tBu2PPr}DI)Ni (3) in benzene-*d*₆.

Figure S11. ³¹P NMR spectrum of (^{tBu2PPr}DI)Ni (3) in benzene-d₆.

Aldehyde Hydrosilylation:

Hydrosilylation of Benzaldehyde Using 0.1 mol% 1: In a glove box, benzaldehyde (478 μL, 3.88 mmol) and PhSiH₃ (395 μL, 3.88 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (2.3 mg, 0.00388 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as benzyl alcohol (337.8 mg, 3.12 mmol, 80.5%). ¹H NMR (benzene-*d*₆): δ 7.10 (m, 2H), 7.06 (m, 2H), 7.03 (m, 1H), 5.12 (s, 1H), 4.34 (s, 2H). ¹³C NMR (benzene-*d*₆): δ 141.83, 128.95, 127.85, 127.81, 64.88.

Figure S12. ¹H NMR spectrum of benzyl alcohol in benzene-*d*₆.

Figure S13. ¹³C NMR spectrum of benzyl alcohol in benzene- d_6 .

Hydrosilylation of 4-Fluorobenzaldehyde Using 0.1 mol% 1: In a glove box, 4-

fluorobenzaldehyde (378 µL, 3.53 mmol) and PhSiH₃ (435 µL, 3.53 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (2.1 mg, 0.00353 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O (2x3 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 4-fluorobenzyl alcohol (408.8 mg, 3.24 mmol, 91.9%). ¹H NMR (benzene-*d*₆): δ 6.93 (m, 2H), 6.79 (m, 2H), 4.18 (s, 2H), 2.37 (bs, 1H). ¹³C NMR (benzene-*d*₆): δ 162.88 (d, *J* = 244.7 Hz), 137.47 (d, *J* = 3.1 Hz), 129.23 (d, *J* = 8.0 Hz), 115.67 (d, *J* = 21.3 Hz), 64.24.

Figure S14. ¹H NMR spectrum of 4-fluorobenzyl alcohol in benzene-*d*₆.

Figure S15. ¹³C NMR spectrum of 4-fluorobenzyl alcohol in benzene-*d*₆.

Hydrosilylation of 4-Chlorobenzaldehyde Using 0.1 mol% 1: In a glove box, 4chlorobenzaldehyde (371 µL, 2.64 mmol) and PhSiH₃ (326 µL, 2.64 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (1.5 mg, 0.00264 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 4-chlorobenzyl alcohol (273.0 mg, 1.91 mmol, 72.5%). ¹H NMR (benzene-*d*₆): δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.11 (s, 2H), 1.83 (s, 1H). ¹³C NMR (benzene-*d*₆): δ 140.41, 133.58, 129.03, 128.62, 64.38.

Figure S16. ¹H NMR spectrum of 4-chlorobenzyl alcohol in benzene-*d*₆.

Figure S17. ¹³C NMR spectrum of 4-chlorobenzyl alcohol in benzene-*d*₆.

Hydrosilylation of 4-Methylbenzaldehyde Using 0.1 mol% 1: In a glove box, 4-

methylbenzaldehyde (911 µL, 7.73 mmol) and PhSiH₃ (952 µL, 7.73 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (4.6 mg, 0.00773 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 4-methylbenzyl alcohol (762.5 mg, 6.24 mmol, 85.3%). ¹H NMR (benzene-*d*₆): δ 7.14 (d, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 7.8 Hz, 2H), 4.38 (s, 2H), 2.58 (bs, 1H), 2.09 (s, 3H). ¹³C NMR (benzene-*d*₆): δ 139.29, 137.17, 129.62, 127.61, 65.17, 21.45.

Figure S18. ¹H NMR spectrum of 4-methylbenzyl alcohol in benzene-*d*₆.

Figure S19. ¹³C NMR spectrum of 4-methylbenzyl alcohol in benzene-*d*₆.

Hydrosilylation of 4-Methoxybenzaldehyde Using 0.1 mol% 1: In a glove box, 4methoxybenzaldehyde (515 μL, 4.23 mmol) and PhSiH₃ (521 μL, 4.23 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (2.4 mg, 0.00423 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 4-methoxybenzyl alcohol (437.5 mg, 3.17 mmol, 74.9%). ¹H NMR (benzene-*d*₆): δ 7.17 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 4.44 (s, 2H), 4.39 (s, 1H), 3.35 (s, 3H). ¹³C NMR (benzene-*d*₆): δ 159.71, 134.23, 129.18, 114.41, 64.74, 55.21.

Figure S20. ¹H NMR spectrum of 4-methoxybenzyl alcohol in benzene- d_6 .

Figure S21. ¹³C NMR spectrum of 4-methoxybenzyl alcohol in benzene- d_6 .

Hydrosilylation of 4-Cyanobenzaldehyde Using 0.1 mol% 1: In a glove box, 4-

cyanobenzaldehyde (859 mg, 6.55 mmol) and PhSiH₃ (807 µL, 6.55 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (3.9 mg, 0.00655 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 4-cyanobenzyl alcohol (413.4 mg, 3.10 mmol, 47.4%). ¹H NMR (benzene-*d*₆): δ 7.12 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 4.38 (s, 2H), 4.20 (s, 1H). ¹³C NMR (benzene-*d*₆): δ 147.62, 132.57, 127.40, 119.63, 110.80, 63.91.

Figure S22. ¹H NMR spectrum of 4-cyanobenzyl alcohol in benzene- d_6 .

Figure S23. ¹³C NMR spectrum of 4-cyanobenzyl alcohol in benzene- d_6 .

Hydrosilylation of Furfural Using 0.1 mol% 1: In a glove box, furfural (292 μL, 3.52 mmol) and PhSiH₃ (435 μL, 3.52 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (2.1 mg, 0.00352 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as furfuryl alcohol (178.2 mg, 1.81 mmol, 51.6%). ¹H NMR (benzene-*d*₆): δ 7.10 (m, 1H), 6.06 (m, 2H), 4.36 (s, 2H), 3.92 (s, 1H). ¹³C NMR (benzene-*d*₆): δ 155.35, 142.72, 110.89, 108.02, 57.38.

Figure S24. ¹H NMR spectrum of furfuryl alcohol in benzene-*d*₆.

Figure S25. ¹³C NMR spectrum of furfuryl alcohol in benzene- d_6 .

Hydrosilylation of Cyclohexanecarboxaldehyde Using 0.1 mol% 1: In a glove box, cyclohexanecarboxaldehyde (726 μL, 5.99 mmol) and PhSiH₃ (739 μL, 5.99 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (3.6 mg, 0.00599 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as cyclohexanemethanol (499.3 mg, 4.37 mmol, 73.0%). ¹H NMR (benzene-*d*₆): δ 3.18 (s, 2H), 1.64 (s, 5H), 1.25 (m, 1H), 1.11 (m, 3H), 0.80 (s, 2H), 0.69 (m, 1H). ¹³C NMR (benzene-*d*₆): δ 68.70, 41.26, 30.54, 27.50, 26.77.

Figure S26. ¹H NMR spectrum of cyclohexanemethanol in benzene- d_6 .

Figure S27. ¹³C NMR spectrum of cyclohexanemethanol in benzene- d_6 .

Hydrosilylation of 3-Cyclohexenecarboxaldehyde Using 0.1 mol% 1: In a glove box, 3cyclohexenecarboxaldehyde (541 μL, 4.76 mmol) and PhSiH₃ (586 μL, 4.76 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (2.8 mg, 0.00476 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 3-cyclohexene-1-methanol (431.4 mg, 3.84 mmol, 80.1%). ¹H NMR (benzene-*d*₆): δ 5.65 (s, 2H), 3.21 (s, 2H), 1.94 (m, 3H), 1.62 (m, 3H), 1.14 (m, 1H), 0.75 (s, 1H). ¹³C NMR (benzene-*d*₆): δ 127.64, 126.76, 67.84, 37.05, 28.98, 26.07, 25.44.

Figure S28. ¹H NMR spectrum of 3-cyclohexene-1-methanol in benzene-*d*₆.

Figure S29. ¹³C NMR spectrum of 3-cyclohexene-1-methanol in benzene- d_6 .

Hydrosilylation of Hexanal Using 0.1 mol% 1: In a glove box, hexanal (682 μL, 5.54 mmol) and PhSiH₃ (683 μL, 5.54 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (3.3 mg, 0.00554 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as hexanol (459.6 mg, 4.50 mmol, 81.2%). ¹H NMR (benzene-*d*₆): δ 4.04 (s, 1H), 3.55 (t, *J* = 6.7 Hz, 2H), 1.52 (pseudo p, *J* = 7.0 Hz, 2H), 1.25 (m, 6H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (benzene-*d*₆): δ 63.04, 33.49, 32.43, 26.26, 23.41, 14.64.

Figure S30. ¹H NMR spectrum of hexanol in benzene- d_6 .

Figure S31. ¹³C NMR spectrum of hexanol in benzene-*d*₆.

Hydrosilylation of Decanal Using 0.1 mol% 1: In a glove box, decanal (948 μL, 5.04 mmol) and PhSiH₃ (621 μL, 5.04 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (3.0 mg, 0.00504 mmol). The resulting red solution was stirred at room temperature for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 2 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as decanol (716 mg, 4.52 mmol, 89.8%). ¹H NMR (benzene-*d*₆): δ 4.29 (s, 1H), 3.46 (s, 2H), 1.49 (d, 2H), 1.24 (s, 16H), 0.87 (s, 3H). ¹³C NMR (benzene-*d*₆): δ 62.93, 33.66, 32.86, 30.70, 30.65, 30.54, 30.34, 26.86, 23.58, 14.80.

Figure S32. ¹H NMR spectrum of decanol in benzene-*d*₆.

Figure S33. ¹³C NMR spectrum of decanol in benzene- d_6 .

Ketone Hydrosilylation:

Hydrosilylation of Acetophenone with 1.0 mol% 1: In a glove box, acetophenone (80.3 μL, 0.689 mmol) and PhSiH₃ (84.8 μL, 0.689 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (4.1 mg, 0.00689 mmol). The resulting red solution was dissolved in benzene*d*₆ and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 1-phenylethanol (56.8 mg, 0.465 mmol, 67.5%). ¹H NMR (benzene-*d*₆): δ 7.23 (d, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 2H), 7.06 (t, *J* = 7.3 Hz, 1H), 4.57 (q, *J* = 6.5 Hz, 1H), 2.52 (s, 1H), 1.29 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (benzene-*d*₆): δ 147.17, 128.88, 127.66, 126.08, 70.50, 25.97.

Figure S34. ¹H NMR spectrum of 1-phenylethanol in benzene- d_6 .

Figure S35. ¹³C NMR spectrum of 1-phenylethanol in benzene-*d*₆.

Hydrosilylation of 4-Fluoroacetophenone with 1.0 mol% 1: In a glove box, 4fluoroacetophenone (116 μL, 0.957 mmol) and PhSiH₃ (117 μL, 0.957 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (5.7 mg, 0.00957 mmol). The resulting red solution was dissolved in benzene- d_6 and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 1-(4-fluorophenyl)ethanol (120.9 mg, 0.863 mmol, 90.1%). ¹H NMR (benzene- d_6): δ 7.00 (m, 2H), 6.81 (m, 2H), 4.44 (q, J = 6.5 Hz, 1H), 2.15 (s, 1H), 1.20 (d, J = 6.5 Hz, 3H). ¹³C NMR (benzene- d_6): δ 162.02 (d, J = 244.2 Hz), 142.02 (d, J = 3.3 Hz), 126.92 (d, J = 7.9 Hz), 114.83 (d, J = 21.4 Hz), 69.06, 25.15.

Figure S36. ¹H NMR spectrum of 1-(4-fluorophenyl)ethanol in benzene-*d*₆.

Figure S37. ¹³C NMR spectrum of 1-(4-fluorophenyl)ethanol in benzene- d_6 .

Hydrosilylation of 4-Chloroacetophenone with 1.0 mol% 1: In a glove box, 4-

chloroacetophenone (94.0 µL, 0.723 mmol) and PhSiH₃ (89.0 µL, 0.723 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (4.3 mg, 0.00723 mmol). The resulting red solution was dissolved in benzene- d_6 and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 1-(4-chlorophenyl)ethanol (97.8 mg, 0.624 mmol, 86.5%). ¹H NMR (benzene- d_6): δ 7.11 (d, *J* = 8.5 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 2H), 4.39 (q, *J* = 6.5 Hz, 1H), 2.48 (s, 1H), 1.16 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (benzene- d_6): δ 145.34, 133.39, 129.01, 127.44, 69.77, 25.74.

Figure S38. ¹H NMR spectrum of 1-(4-chlorophenyl)ethanol in benzene- d_6 .

Figure S39. ¹³C NMR spectrum of 1-(4-chlorophenyl)ethanol in benzene- d_6 .

Hydrosilylation of 2,4,6-Trimethylacetophenone with 1.0 mol% 1: In a glove box, 2,4,6trimethylacetophenone (109.0 μL, 0.655 mmol) and PhSiH₃ (80.7 μL, 0.655 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (3.9 mg, 0.00655 mmol). The resulting red solution was dissolved in benzene-*d*₆ and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 1mesitylethanol (89.7 mg, 0.546 mmol, 83.3%). ¹H NMR (benzene-*d*₆): δ 6.70 (s, 2H), 5.10 (q, *J* = 6.7 Hz, 1H), 2.45 (s, 1H), 2.32 (s, 6H), 2.12 (s, 3H), 1.37 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (benzene-*d*₆): δ 138.86, 136.20, 135.95, 130.75, 130.68, 67.69, 67.56, 22.22, 22.17, 21.18, 21.13, 21.08, 21.00.

Figure S40. ¹H NMR spectrum of 1-mesitylethanol in benzene-*d*₆.

Figure S41. ¹³C NMR spectrum of 1-mesitylethanol in benzene-*d*₆.

Hydrosilylation of 4-Methoxyacetophenone with 1.0 mol% 1: In a glove box, 4-

methoxyacetophenone (75.7 mg, 0.504 mmol) and PhSiH₃ (62.1 µL, 0.504 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (3.0 mg, 0.00504 mmol). The resulting red solution was dissolved in benzene- d_6 and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 1-(4-methoxyphenyl)ethanol (64.1 mg, 0.421 mmol, 83.6%). ¹H NMR (benzene- d_6): δ 7.19 (d, *J* = 8.3 Hz, 2H), 6.78 (d, *J* = 8.3 Hz, 2H), 4.65 (q, *J* = 6.1 Hz, 1H), 3.34 (s, 3H), 2.78 (s, 1H), 1.36 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (benzene- d_6): δ 159.66, 139.36, 127.36, 114.36, 70.17, 70.09, 55.21, 55.17, 26.02, 25.97.

Figure S42. ¹H NMR spectrum of 1-(4-methoxyphenyl)ethanol in benzene- d_6 .

Figure S43. ¹³C NMR spectrum of 1-(4-methoxyphenyl)ethanol in benzene- d_6 .

Hydrosilylation of Dicyclohexyl Ketone with 1.0 mol% 1: In a glove box, dicyclohexylketone (125.8 μL, 0.638 mmol) and PhSiH₃ (78.7 μL, 0.638 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (3.8 mg, 0.00638 mmol). The resulting red solution was dissolved in benzene- d_6 and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as dicyclohexylmethanol (111.5 mg, 0.568 mmol, 89.0%). ¹H NMR (benzene- d_6): δ 2.91 (t, J = 5.5 Hz, 1H), 1.84 (d, J = 12.6 Hz, 2H), 1.74 (dd, J = 16.7, 7.1 Hz, 4H), 1.64 (dd, J = 6.8, 3.5 Hz, 2H), 1.49 (d, J = 12.5 Hz, 2H), 1.36 (m, 3H), 1.10 (m, 9H). ¹³C NMR (benzene- d_6): δ 80.51, 40.67, 30.72, 28.11, 27.40, 27.31, 27.03.

Figure S44. ¹H NMR spectrum of dicyclohexylmethanol in benzene-*d*₆.

Figure S45. ¹³C NMR spectrum of dicyclohexylmethanol in benzene- d_6 .

Hydrosilylation of Cyclohexanone with 1.0 mol% 1: In a glove box, cyclohexanone (78.3 μ L, 0.756 mmol) and PhSiH₃ (93.2 μ L, 0.756 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (4.5 mg, 0.00756 mmol). The resulting red solution was dissolved in benzene*d*₆ and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as cyclohexanol (42.6 mg, 0.425 mmol, 56.3%). ¹H NMR (benzene-*d*₆): δ 3.43 (m, 1H), 1.84 (bs, 1H), 1.75 (m, 2H), 1.59 (m, 2H), 1.35 (m, 1H), 1.21 (m, 2H), 1.09 (m, 3H). ¹³C NMR (benzene-*d*₆): 30.37, 36.18, 26.33, 24.89.

Figure S46. ¹H NMR spectrum of cyclohexanol in benzene- d_6 .

Figure S47. ¹³C NMR spectrum of cyclohexanol in benzene- d_6 .

Hydrosilylation of 2,4-dimethyl-3-pentanone with 1.0 mol% 1: In a glove box, 2,4-dimethyl-3-pentanone (85.6 μL, 0.605 mmol) and PhSiH₃ (74.5 μL, 0.605 mmol) were added sequentially to a 20 mL scintillation vial containing 1 (3.6 mg, 0.00605 mmol). The resulting red solution was dissolved in benzene- d_6 and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 2,4dimethyl-3-pentanol (0.01458 mg, 0.125 mmol, 20.7%). ¹H NMR (benzene- d_6): δ 2.78 (t, J = 5.8Hz, 1H), 1.60 (dh, J = 13.2, 6.7 Hz, 2H), 0.89 (d, J = 6.7 Hz, 6H), 0.81 (d, J = 6.8 Hz, 6H). ¹³C NMR (benzene- d_6): δ 31.21, 20.37, 17.51.

Figure S48. ¹H NMR spectrum of 2,4-dimethyl-3-pentanol in benzene-*d*₆.

Figure S49. ¹³C NMR spectrum of 2,4-dimethyl-3-pentanol in benzene-*d*₆.

Hydrosilylation of 2-Hexanone with 1.0 mol% 1: In a glove box, 2-hexanone (89.1 μL, 0.722 mmol) and PhSiH₃ (89.0 μL, 0.722 mmol) were added sequentially to a 20 mL scintillation vial containing **1** (4.3 mg, 0.00722 mmol). The resulting red solution was dissolved in benzene-*d*₆ and transferred into a J. Young NMR tube and heated at 60 °C for 24 h. Greater than 99% conversion was observed *via* ¹H NMR spectroscopy. The solution was hydrolyzed with 1 mL of 10% NaOH_(aq) and the organic product was extracted using Et₂O and dried over Na₂SO₄. The solvent was removed *in vacuo* and the product was identified as 2-hexanol (35.7 mg, 0.349 mmol, 63.1%). ¹H NMR (benzene-*d*₆): δ 3.54 (h, *J* = 5.7 Hz, 1H), 1.23 (m, 7H), 1.02 (d, *J* = 6.2 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (benzene-*d*₆): δ 68.12, 68.03, 39.83, 28.75, 24.12, 24.07, 23.51, 14.70.

Figure S50. ¹H NMR spectrum of 2-hexanol in benzene- d_6 .

Figure S51. ¹³C NMR spectrum of 2-hexanol in benzene- d_6 .

Ester Hydrosilylation:

Dihydrosilylation of Ethyl Acetate with 1.0 mol% 1: In a glove box, 90.7 μ L of ethyl acetate (0.924 mmol) and 342.0 μ L PhSiH₃ (2.77 mmol) were combined in a 20 mL scintillation vial and then added to a vial containing 5.5 mg **1** (0.00924 mmol) in 0.5 mL benzene-*d*₆. The red solution was then transferred into a J. Young NMR tube, sealed, and heated to 60 °C for 24 h. Analysis by ¹H NMR spectroscopy revealed 80% conversion of ethyl acetate to a mixture of silyl ethers.

Figure S52. ¹H NMR spectrum of silyl ether mixture collected at 24 h in benzene-*d*₆.

Cleavage of Allyl Acetate Using 1.0 mol% 1: Under an inert atmosphere, allyl acetate (83.4 μ L, 0.773 mmol) and PhSiH₃ (95.2 μ L, 0.773 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (4.6 mg, 0.00773 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 30 min, the solution returned to red and greater than 99% conversion was observed by ¹H NMR spectroscopy. The solution was diluted with benzene and a benzene solution containing 1 equivalent of I₂ (relative to Ni, 31.2 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl triacetate (55.9 mg, 0.198 mmol, 76.8%) as a dark yellow oil. ¹H NMR (benzene-*d*₆): δ 8.02 – 7.99 (m, *J* = 3.5 Hz, 2H), 7.19 – 7.08 (m, 3H), 1.67 (s, 9H). ¹³C NMR (benzene-*d*₆): δ 169.11, 135.62, 132.70, 128.78, 127.19, 22.22.

Figure S53. ¹H NMR spectrum of phenylsilanetriyl triacetate in benzene-*d*₆.

Figure S54. ¹³C NMR spectrum of phenylsilanetriyl triacetate in benzene- d_6 .

Atom Efficient Cleavage of Allyl Acetate Using 1.0 mol% 1: Under an inert atmosphere, allyl acetate (90.6 μ L, 0.840 mmol) and PhSiH₃ (34.5 μ L, 0.280 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing 1 (5.0 mg, 0.00840 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 3 h, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy.

Cleavage of Allyl Acetate Using 0.1 mol% 1: Under an inert atmosphere, allyl acetate (0.94 mL, 8.73 mmol) and PhSiH₃ (1.08 mL, 8.73 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (5.2 mg, 0.00521 mmol). A color change to pale yellow and vigorous bubbling was quickly observed. The vial was left loosely capped and after 1 h, the solution returned to red. Greater than 99% conversion was observed via ¹H NMR spectroscopy.

Figure S55. ¹H NMR spectrum of phenylsilanetriyl triacetate and propylene obtained following allyl acetate cleavage using 0.33 equivalents of PhSiH₃ in benzene- d_6 .

Figure S56. ¹H NMR spectrum of the silyl esters obtained following allyl acetate cleavage using 0.1 mol% **1** in benzene- d_6 .

Cleavage of Allyl Benzoate Using 1.0 mol% 1: Under an inert atmosphere, allyl benzoate (93.1 μ L, 0.605 mmol) and PhSiH₃ (75.6 μ L, 0.605 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (3.6 mg, 0.00605 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 30 min, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy. The solution was diluted with benzene and 1 equivalent of I₂ in benzene (relative to Ni, 24.4 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl triabenzoate (80.4 mg, 0.172 mmol, 85.1%) as a dark yellow oil. ¹H NMR (benzene-*d*₆): 8.27 (dd, *J* = 4.8, 2.3 Hz, 2H), 8.21 (d, *J* = 7.3 Hz, 6H), 7.14 (d, *J* = 6.6 Hz, 4H), 7.04 (t, *J* = 7.4 Hz, 3H), 6.93 (t, *J* = 7.7 Hz, 6H). ¹³C NMR (benzene-*d*₆): δ 164.95, 135.89, 134.16, 132.83, 131.51, 131.42, 130.47, 129.06, 128.99.

Figure S57. ¹H NMR spectrum of phenylsilanetriyl tribenzoate in benzene- d_6 .

- 164.95 135.89 134.16 134.15 131.51 131.51 131.42 131.42 131.42 131.42 131.42 131.42 131.42 132.83 122.06

Figure S58. ¹³C NMR spectrum of phenylsilanetriyl tribenzoate in benzene- d_6 .

Cleavage of Allyl Phenylacetate Using 1.0 mol% 1: Under an inert atmosphere, allyl phenylacetate (111.3 μ L, 0.655 mmol) and PhSiH₃ (80.7 μ L, 0.655 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (3.9 mg, 0.00655 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 30 min, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy. The solution was diluted with benzene and 1 equivalent of I₂ in benzene (relative to Ni, 24.4 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl tris(2-phenylacetate) (94.1 mg, 0.184 mmol, 84.4%) as an off white solid. ¹H NMR (benzene-*d*₆): δ 7.80 (d, *J* = 6.7 Hz, 2H), 7.16 – 6.99 (m, 18H), 3.41 (s, 6H). ¹³C NMR (benzene-*d*₆): δ 169.66, 135.55, 134.06, 132.71, 130.18, 129.04, 128.72, 127.64, 126.58, 42.69.

Figure S59. ¹H NMR spectrum of phenylsilanetriyl tris(2-phenylacetate) in benzene-*d*₆.

Figure S60. ¹³C NMR spectrum of phenylsilanetriyl tris(2-phenylacetate) in benzene-*d*₆.

Cleavage of Allyl Phenoxyacetate Using 1.0 mol% 1: Under an inert atmosphere, allyl phenoxyacetate (101.8 μ L, 0.588 mmol) and PhSiH₃ (72.5 μ L, 0.588 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (3.5 mg, 0.00588 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 30 min, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy. The solution was diluted with benzene and 1 equivalent of I₂ in benzene (relative to Ni, 23.7 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl tris(2-phenoxyacetate) (98.1 mg, 0.176 mmol, 90%) as an off white solid. ¹H NMR (benzene-*d*₆): δ 7.81 (d, *J* = 6.8 Hz, 2H), 7.17 – 7.04 (m, 4H), 7.00 (t, *J* = 7.9 Hz, 6H), 6.75 (dd, *J* = 10.3, 4.5 Hz, 8H), 4.20 (s, 6H). ¹³C NMR (benzene-*d*₆): δ 167.15, 158.38, 135.54, 133.35, 130.16, 129.01, 125.11, 122.27, 115.33, 65.59.

Figure S61. ¹H NMR spectrum of phenylsilanetriyl tris(2-phenoxyacetate) in benzene-*d*₆.

Figure S62. ¹³C NMR spectrum of phenylsilanetriyl tris(2-phenoxyacetate) in benzene-*d*₆.

Cleavage of Allyl Hexanoate Using 1.0 mol% 1: Under an inert atmosphere, allyl hexanoate (118.0 μ L, 0.672 mmol) and PhSiH₃ (83.0 μ L, 0.672 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (4.0 mg, 0.672 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 3 h, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy. The solution was diluted with benzene and 1 equivalent of I₂ in benzene (relative to Ni, 27.1 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl trihexanoate (94.8 mg, 0.210 mmol, 93.9%) as a dark yellow oil. ¹H NMR (benzene-*d*₆): δ 8.33 – 8.00 (m, 2H), 7.18 (m, 3H), 2.28 – 2.08 (m, 6H), 1.58 – 1.43 (m, 6H), 1.10 (m, 12H), 0.76 (m, 9H). ¹³C NMR (benzene-*d*₆): δ 171.94, 135.68, 132.65, 128.80, 127.69, 35.98, 31.61, 24.95, 22.92, 14.37.

Figure S63. ¹H NMR spectrum of phenylsilanetriyl trihexanoate in benzene-*d*₆.

Figure S64. ¹³C NMR spectrum of phenylsilanetriyl trihexanoate in benzene- d_6 .

Cleavage of Allyl Cyclohexylpropanoate using 1.0 mol% 1: Under an inert atmosphere, allyl cyclohexylpropanoate (100.1 μ L, 0.487 mmol) and PhSiH₃ (60.0 μ L, 0.487 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (2.9 mg, 0.00621 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. A color change to pale yellow was quickly observed. After 3 h, the solution returned to red and greater than 99% conversion was observed via ¹H NMR spectroscopy. The solution was diluted with benzene and 1 equivalent of I₂ in benzene (relative to Ni, 19.6 μ L of a 0.248 M solution) was added. The mixture was allowed to sit for 1 h, after which it was filtered and volatile compounds were removed under reduced pressure, yielding phenylsilanetriyl tris(3-cyclohexylpropanoate) (86.3 mg, 0.151, 93.0%) as a dark yellow oil. ¹H NMR (benzene-*d*₆): δ 8.37 – 8.10 (m, 2H), 7.33 – 7.16 (m, 3H), 2.33 – 2.26 (m, 6H), 1.63 – 1.41 (m, 21H), 1.16 – 0.96 (m, 12H), 0.69 (m, 6H). ¹³C NMR (benzene-*d*₆): δ 172.25, 135.71, 132.65, 128.80, 127.72, 37.50, 33.70, 33.43, 32.60, 27.17, 26.88.

Figure S65. ¹H NMR spectrum of phenylsilanetriyl tris(3-cyclohexylpropanoate) in benzene- d_6 .

Figure S66. ¹³C NMR spectrum of phenylsilanetriyl tris(3-cyclohexylpropanoate) in benzene-d₆.

Cleavage of Allyl Cinnamate Using 1.0 mol% 1: Under an inert atmosphere, allyl cinnamate (75.9 mg, 0.403 mmol) and PhSiH₃ (49.7 μ L, 0.403 mmol) were combined in a 20 mL scintillation vial and then transferred to a vial containing **1** (2.4 mg, 0.00403 mmol) in 0.5 mL benzene-*d*₆. The red solution was transferred into a J. Young NMR tube and sealed. After 3 h, greater than 99% conversion was observed via ¹H NMR spectroscopy. Since I₂ addition was found to result in product alteration, this tricarboxyphenylsilane could not be isolated.

Figure S67. ¹H NMR spectrum showing the conversion of allyl cinnamate to phenylsilanetriyl tris(3-phenylacrylate) and propylene in benzene- d_6 .

Figure S68. ¹³C NMR spectrum showing the conversion of allyl cinnamate to phenylsilanetriyl tris(3-phenylacrylate) and propylene in benzene- d_6 .

Hydrosilylation of 5-(acetoxymethyl)furfural with 1.0 mol% 1: Under inert atmosphere, 5-(acetoxymethyl)furfural (107.3 mg, 0.638 mmol) and PhSiH₃ (157.3 μ L, 1.28 mmol) were added to a 20 mL scintillation vial containing **1** (3.8 mg, 0.00639 mmol) dissolved in benzene-*d*₆. After 3 h, greater than 99% conversion of the aldehyde to a mixture of silyl ethers was observed by ¹H NMR. Additional time and heating did not result in ester C-O bond hydrosilylation.

Figure S69. ¹H NMR spectrum collected following the hydrosilylation of 5-(acetoxymethyl)furfural with PhSiH₃ using 1.0 mol% **1** in benzene- d_6 .

Dehydrogenative coupling of PhSiH₃ using 1.0 mol% 1: Under inert atmosphere, PhSiH₃ (72.5 μ L, 0.588 mmol) was added to a 20 mL scintillation vial containing **1** (3.5 mg, 0.00588 mmol) dissolved in benzene-*d*₆. After 24 h, several coupled silane products were observed by ¹H NMR, indicating approximately 35% conversion of PhSiH₃. ²⁹Si NMR revealed the presence of two coupled silanes in appreciable quantity [(PhSiH₂)₂ (-61.50 ppm), (PhSiH₂)₂SiHPh (-58.85 ppm)] and a small amount of (PhSiH₂)₃SiPh (-56.12 ppm). Quaternary silane resonances not located.

Figure S70. ¹H NMR spectrum of PhSiH₃ coupling using 1.0 mol% 1 in benzene- d_6 .

Figure S71. ²⁹Si NMR spectrum of PhSiH₃ coupling using 1.0 mol% 1 in benzene-*d*₆.

Hydrosilylation of Benzaldehyde with 1.0 mol% 1 and 20 mol% PMe₃: Under an inert atmosphere, benzaldehyde (66.8 μ L, 0.655 mmol) and PhSiH₃ (80.7 μ L, 0.655 mmol) were combined in a 20 mL scintillation vial before transferring to another vial containing PMe₃ (13.6 μ L, 0.13 mmol) and 1 (3.9 mg, 0.00655 mmol) dissolved in benzene-*d*₆. The resulting yellow solution was transferred to a J. Young NMR tube and allowed to stand for 3 h at 25 °C. Only 3% conversion was observed by ¹H NMR spectroscopy. ³¹P NMR spectroscopy indicates the displacement of the pendant phosphine arms by PMe₃.

Figure S72. ¹H NMR spectrum of attempted benzaldehyde hydrosilylation using PhSiH₃ and 1.0 mol% **1** in the presence of 20 mol% PMe₃ in benzene- d_6 .

Figure S73. ³¹P NMR spectrum collected during the catalytic hydrosilylation of benzaldehyde using PhSiH₃ and 1.0 mol% **1** in the presence of 20 mol% PMe₃ in benzene- d_6 .

Addition of PMe₃ to 1: Under inert atmosphere, PMe₃ (7.5 μ L, 0.0729 mmol) was added to a vial containing 1 (21.7 mg, 0.0364 mmol) dissolved in benzene-*d*₆. After 1 h, ³¹P NMR spectroscopy revealed partial displacement of the diphenylphosphine arms by PMe₃.

Figure S74. ³¹P NMR spectrum collected upon adding two equivalents of PMe₃ to **1** in benzene*d*₆. The resonance at 39.03 ppm is unreacted **1**. Partial conversion to two new compounds is observed: one that exhibits a singlet at -21.81 ppm $[Ni(PMe_3)_4]^1$ and a second possessing resonances at 25.88 (q) and -24.69 (d) ppm [proposed to be (κ^1 -*P*-^{Ph2PPr}DI)Ni(PMe_3)_3].

Hydrosilylation of Allyl Acetate with 1.0 mol% 1 and 20 mol% PMe₃: Under an inert atmosphere, allyl acetate (49.0 μ L, 0.454 mmol) and PhSiH₃ (56.0 μ L, 0.454 mmol) were combined in a 20 mL scintillation vial before transferring to another vial containing PMe₃ (9.4 μ L, 0.09 mmol) and 1 (2.7 mg, 0.00454 mmol) dissolved in benzene-*d*₆. The resulting yellow solution was transferred to a J. Young NMR tube and allowed to stand for 30 min. Only 12% conversion was observed by ¹H NMR spectroscopy. ³¹P NMR spectroscopy reveals the formation of (κ^2 -*N*,*N*-^{Ph2PPr}DI)Ni(PMe₃)₂.

Figure S75. ³¹P NMR spectrum collected during the catalytic hydrosilylation of allyl acetate using PhSiH₃ and 1.0 mol% **1** in the presence of 20 mol% PMe₃ in benzene- d_6 .

References:

1. Despagnet-Ayoub, E.; Takase, M. K.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2015, 127, 10500-10503.