Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

An air and moisture tolerant iminotrihydroquinoline-ruthenium(II) catalyst for the transfer hydrogenation of ketones

Jiaoyan Li,^{a,#} Yingmiao Ma,^{a,#} Zheng Wang,^{a,b,c,#} Qingbin Liu,*, ^a Gregory A. Solan,*, ^{b,d,} Yanping Ma^b and Wen-Hua Sun*,^{b,c}

(#Jiaoyan Li, Yingmiao Ma and Zheng Wang made an equal contribution in this work.)

- ^a College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
- ^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- ^c CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- ^d Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.

Tel: +86-10-62557955

Contents

1.	General	General Considerations		
2.	NMR spectra		S1	
	2.1	NMR spectra for 5,6,7,8-tetrahydroquinolin-8-amine	S1	
	2.2	NMR spectra for E and F	S2	
	2.3	NMR spectra showing deactivation of catalyst E over time	S6	
	<mark>2.4</mark>	NMR spectra of triphenylphosphine oxide isolated during catalyst deactivation	S6	
	2.5	NMR spectra of tert-butyl-4-hydroxypiperidine-1-carboxylate	S8	
3 .	X-Ray o	erystallographic studies	<mark>S9</mark>	
<mark>4</mark>	Referen	ces	S10	

^{*}E-mail: qbinliu@sina.com (Q. L.); whsun@iccas.ac.cn (W.-H.S); gas8@leicester.ac.uk (G.A.S.).

1. General Considerations

All manipulations involving ruthenium complexes, unless stated otherwise, were carried out under a nitrogen atmosphere using standard Schlenk techniques. 2-Propanol (analytical reagent) was either used directly from the bottle or was dried over sodium wire, distilled and stored under nitrogen before being degassed prior to use. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ³¹P (202 MHz) spectra were recorded on a Bruker AVIII–500 NMR spectrometer. GC measurements, with dodecane as an internal standard with respect to the ketone. ¹⁻³ GC analysis was carried out on an Agilent 6820 instrument using a polar capillary column (part number 19091N-113 HP-INNOWAX): injector temp. 300 °C; detector temp. 300 °C; column temp. 40 °C; withdraw time 2 min, then 20 °C/min to 270 °C over 20 min.

2. NMR spectra

2.1 NMR spectra of 5,6,7,8-tetrahydroquinolin-8-amine

Figure S1 ¹H NMR spectrum of 5,6,7,8-tetrahydroquinolin-8-amine⁴ in CDCl₃

Figure S2 ¹³C {¹H} NMR spectrum of 5,6,7,8-tetrahydroquinolin-8-amine in CDCl₃

2.2 NMR spectra for E and F

Figure S3 ¹H NMR spectrum of E in CDCl₃

Figure S4 ¹³C{¹H} NMR spectrum of E in CDCl₃

Figure S5 31P{1H} NMR spectrum of E in CDCl₃

Figure S6 ¹H NMR spectrum of F in CDCl₃

Figure S7 ¹³C{¹H} NMR spectrum of F in CDCl₃

Figure S8 ³¹P{¹H} NMR spectrum of F in CDCl₃

Figure S9 ³¹P{¹H} NMR spectrum of E in CDCl₃ (top) and after heating this solution to 100 °C for 1 hour to give F (bottom)

2.3 NMR spectra showing deactivation of catalyst E over time

Method: Under an oxygen atmosphere, a mixture of **E** (40 mg), *t*-BuOK (8 mg) and 2-propanol (5 mL) were stirred at 82 °C. Aliquots of the reaction mixture were taken at 1 min, 5 min, 15 min, and 30 min and their ³¹P NMR spectra immediately recorded.

Figure S10 Stacked ³¹P{¹H} NMR spectra of a sample of **E** that had been heated to 82 °C under an O₂ atmosphere. Spectra recorded after 1 min (1), 5 min (2), 10 min (3) and 30 min (4)) showing catalyst deactivation of **E** and formation of Ph₃PO.

2.4 NMR spectra of triphenylphosphine oxide isolated during catalyst deactivation

Figure S11 ¹H NMR spectrum of triphenylphosphine oxide⁴ isolated during catalyst deactivation

Figure S12 ¹³C{¹H} NMR spectrum of triphenylphosphine oxide⁴ isolated during catalyst deactivation

Figure S13 31P{1H} NMR spectrum of triphenylphosphine oxide4 isolated during catalyst deactivation

2.4 NMR spectra of tert-butyl-4-hydroxypiperidine-1-carboxylate⁵

Figure S14 ¹H NMR spectrum of *tert*-butyl-4-hydroxypiperidine-1-carboxylate⁵ in CDCl₃ (entry 17, Table 5)

Figure S15 ¹³C NMR spectrum of *tert*-butyl-4-hydroxypiperidine-1-carboxylate⁵ in CDCl₃ (entry 17, Table 5)

3. X-Ray crystallographic studies

Table S1. Crystal data and structure refinement for ${\bf E}$ and ${\bf F}$

Complex	E	\mathbf{F}
Empirical formula	$C_{45}H_{42}Cl_2N_2P_2Ru$	$C_{45}H_{40}Cl_2N_2P_2Ru$
Formula weight	844.72	842.75
Temperature/K	173.1500	173.1500
Crystal system	monoclinic	orthorhombic
Space group	$P2_1/c$	$Pna2_1$
a/Å	12.296(3)	25.282(5)
b/Å	10.957(2)	9.6695(19)
c/Å	33.036(7)	15.833(3)
α/°	90.00	90.00
β/°	97.24(3)	90.00
γ/°	90.00	90.00
$Volume/Å^3$	4415.4(15)	3870.9(13)
Z	4	4
pcalcg/cm ³	1.271	1.444
μ /mm ⁻¹	0.580	0.661
F(000)	1736.0	1724.0
Crystal size/mm ³	$0.303 \times 0.159 \times 0.082$	$0.327 \times 0.276 \times 0.081$
Radiation	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	2.48 to 54.98	4.5 to 54.98
	$-15 \le h \le 15$,	$-32 \le h \le 32$,
Index ranges	$-14 \le k \le 14$,	$-12 \le k \le 12,$
	$-42 \le 1 \le 42$	$-20 \le l \le 20$
Reflections collected	46059	43776
Independent reflections	10099 [$R_{int} = 0.1138$, $R_{sigma} = 0.0840$]	8873 [$R_{int} = 0.0522$, $R_{sigma} = 0.0309$]
Data/restraints/parameters	10099/0/469	8873/1/470
Goodness-of-fit on F2	1.125	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0962$, $wR_2 = 0.2214$	$R_1 = 0.0352$, $wR_2 = 0.0859$
Final R indexes [all data]	$R_1 = 0.1128$, $wR_2 = 0.2319$	$R_1 = 0.0368$, $wR_2 = 0.0867$
Largest diff. peak/hole / e Å-3	2.20/-1.13	0.93/-0.68

Figure S16 Olex2 representations of E and F. Thermal ellipsoids are shown at 30% probability.

4. References

- (1) (a) Wang, Z.; Pan, B.; Liu, Q.; Yue, E.; Solan, G. A.; Ma, Y.; Sun, W.-H. *Catal. Sci. Technol.* **2017**, 7, 1654-1661; (b) S. Muthaiahb, S. H. Honga, *Adv. Synth. Catal.* **2012**, 354, 3045; (c) S. Shahane, C. Fischmeister, C. Bruneau, *Catal. Sci. Technol.* **2012**, 2, 1425.
- (2) McEachern, E. J.; Bridger, G. J.; Skupinska, K. A.; Skerlj, R. T.; Yang. W. Pat., US20070060757A1, **2007**, p16.
- (3) (a) Baratta, W.; Ballico, M.; Del Zotto, A.; Herdtweck, E.; Rigo, P. *Organometallics* 2007, 26, 5636-5642; (b) Baratta, W.; Herdtweck, E.; Siega, K.; Toniutti, M.; Rigo, P. *Organometallics* 2005, 24, 1660-1669.
- (4) Mishra, V. S.; Vijaykumar, V., Joshi, J. B. Ind Eng Chem Res, 1995, 34(1): 2-48.
- (5) Wang, J.; Liang, Y.-L.; Qu, J. Chem. Commun., 2009, 5144-5146.