

Electronic Supporting Information

Scheme S3 Molecular structures of $[Ir(ppy)_2(phpzpy)]PF_6$ (left) and $[Ir(ppy)_2(F5phpzpy)]PF_6$ (right) with intramolecular $\pi \cdots \pi$ interactions (dashed line).

Scheme S4 The molecular structure of $(ppy)_2Ir-(bsbd)-Ir(ppy)_2$ showing intramolecular $\pi \cdots \pi$ stacking interactions (dashed line)

Scheme S5 The molecular structure of Ir(4Pyppy)₃ and Ir(4Pyppym)₃.

Scheme S6

Table S1 Photophysical properties of $1 \cdot PF_6$, $2 \cdot PF_6$, $3 \cdot PF_6$, $bbbiH_3$, bmbibH and mbibH in CH₃CN at room temperature or in EtOH-MeOH (v/v = 3/1) at 77 K (CH₃CN was degassed for the lifetime measurements of $1 \cdot PF_6$, $2 \cdot PF_6$ and $3 \cdot PF_6$).

Compound	Medium	$\lambda_{abs}\left(nm\right)$	$\lambda_{em}(nm)$	Lifetime (µs)	quantum yield
1.PF ₆	CH ₃ CN (298 K)	235, 272, 280, 298, 309, 345 and a tail to 540	534	2.39	39.5%
	EtOH-MeOH (77 K)	-	520 and 553	-	-
2·PF ₆	CH ₃ CN (298 K)	238, 273, 282, 299, 310, 346 and a tail to 540	536	2.94	66.4%
	EtOH-MeOH (77 K)	-	522 and 555	-	-
3·PF ₆	CH ₃ CN (298 K)	236, 270, 281, 299, 309, 346 and a tail to 540	558	1.75	27.0%
	EtOH-MeOH (77 K)	-	538 and 571	-	-
bbbiH ₃	CH ₃ CN (298 K)	235, 306	-	-	-
bmbibH	CH ₃ CN (298 K)	230, 295	-	-	-
mbibH	CH ₃ CN (298 K)	233, 290	-	-	-

Fig. S1 ¹H NMR spectrum of bbibH₃ (500 MHz, DMSO- d_6).

Fig. S2 ¹H NMR spectrum of bmbibH (500 MHz, DMSO- d_6).

Fig. S3 ¹H NMR spectrum of mbibH (500 MHz, DMSO- d_6).

Fig. S4 ¹H NMR spectrum of $1 \cdot PF_6$ (500 MHz, DMSO- d_6). The signal at 3.33 ppm are from H₂O, respectively.

Fig. S5 The 2D $^{1}\text{H}-^{1}\text{H}$ COSY NMR spectrum of $1 \cdot \text{PF}_{6}$ (500 MHz, DMSO- d_{6}). The signals from H-N_{imidazole} were omitted for clarity.

Fig. S6 ¹H NMR spectrum of $2 \cdot PF_6$ (500 MHz, DMSO- d_6). The signals at 3.37 ppm is from H₂O.

Fig. S7 The 2D ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY NMR spectrum of $2 \cdot PF_6$ (500 MHz, DMSO- d_6). The signals from CH₃ groups were omitted for clarity.

Fig. S8 ¹H NMR spectrum of $3 \cdot PF_6$ (500 MHz, DMSO- d_6 . The signals at 5.76 and 3.35 ppm are from CH₂Cl₂ and H₂O, respectively.

Fig. S9 The 2D $^{1}\text{H}^{-1}\text{H}$ COSY NMR spectrum of **3**·**PF**₆ (500 MHz, DMSO-*d*₆).

Fig. S10 Electrospray ionization mass spectrometry (ESI-MS) of $1 \cdot PF_6$ in CH₂Cl₂-CH₃OH solution, showing a peak at 770.25.

Fig. S11 Electrospray ionization mass spectrometry (ESI-MS) of $2 \cdot PF_6$ in CH₂Cl₂-CH₃OH solution, showing a peak at 798.33.

Fig. S12 Electrospray ionization mass spectrometry (ESI-MS) of $3 \cdot PF_6$ in CH₂Cl₂-CH₃OH solution, showing a peak at 668.33.

Fig. S13 The packing structure of $[2H]^{2+} \cdot 2PF_6 \cdot CH_3COOH$.

Fig. S14 Frontier molecular orbitals of the molecular structures of 1, 2 and 3. (isovalue = 0.01). Energies of HOMO and HOMO-LUMO gaps (HLGs) are given.

Fig. S15 Phosphorescence spectra of $1 \cdot PF_6$, $2 \cdot PF_6$ and $3 \cdot PF_6$ in EtOH-MeOH (v/v = 3/1) at 77 K ($c = 1.0 \times 10^{-4}$ M, $\lambda_{ex} = 368$ nm).

Fig. S16 Luminescence spectral changes of $3 \cdot PF_6$ in CH₃CN ($c = 1 \times 10^{-4}$ M, $\lambda_{ex} = 368$ nm) upon adding TFA at room temperature.