Supporting Information

Rational synthesis of luminescent uncommon (3,4,6)-c connected Zn(II) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ion

Fig. S1 view of the two types of binuclear $[Zn_2(\mu_2\text{-}COO)_2(\mu_1\text{-}COO)_2]$ and $[Zn_2(\mu_2\text{-}COO)_4].$

Fig. S2 The 3D porous structure of 1 along the *a* axis.

Thermogravimetric analysis (TGA) for **1** shows a weight loss of 22.6 % between 35 and 285 °C, which corresponding to the loss of 5.5 DMF and coordinated H₂O molecules. Upon further heating, a weight loss of 34.9 % should correspond to the release of the organic ddn and formate ligands, and then the collapse of the framework (calcd 32.8 %) (Fig.S3). Anal. (%) calcd for $C_{62.4}H_{75.6}N_{8.8}O_{31.6}Zn_4$: C,

43.56 %; H, 4.43 %; N, 7.17 %; Found: C, 42.66 %; H, 4.01%; N, 6.87 %.

Fig. S3 view of the TGA.

Fig. S4 view of the N₂ adsorption isotherms at 77 K.

Fig. S5 The photoluminescence spectra of solid samples of H_4 ddn ligand and 1 recorded at room temperature.

Fig. S6 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 1,3-DNB in DMF.

Fig. S7 The Stern–Volmer plot of 1 against 1,3-DNB.

Fig. S8 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,4-DNT in DMF.

Fig. S9 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,4-DNT.

Fig. S10 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,6-DNT in DMF.

Fig. S11 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,6-DNT.

Fig. S12 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2-NT in DMF.

Fig. S13 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2-NT.

Fig. S14 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 4-NT in DMF.

Fig. S15 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 4-NT.

Fig. S16 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of MNP.

Fig. S17 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of MNP.

Fig. S18 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of NB in DMF.

Fig. S19 Stern–Volmer plot for the fluorescence quenching of **1** upon the addition of NB.

Fig. S20 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of PNP in DMF.

Fig. S21 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of PNP.

Fig. S22 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of TNP in DMF.

Fig. S23 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of TNP.

Fig. S24 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 1,2,4-TMB in DMF.

Fig. S25 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 1,2,4-TMB.

Fig. S26 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 1,3,5-TMB in DMF.

Fig. S27 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 1,3,5-TMB.

Fig. S28 view of the PXRD for the sample 1 (black: simulated; red: as-synthesized) and its suspensions of analytes.

Fig. S29 Comparison of the fluorescence lifetime of 1 (above) and Fe^{3+} (*i*) (below).

Fig. S30 The O1s XPS spectra of the 1 (black) and $1@Fe^{3+}$ (red).

Fig. S31 The XPS spectra of the $1@Fe^{3+}$ (red) and 1 (black).

HOMO H₄ddn

LUMO H₄ddn

HOMO 1

HOMO 1,3-DNB

LUMO 1

LUMO 1,3-DNB

LUMO NB

HOMO 2,6-DNT

HOMO 2-NT

HOMO 2,4-DNT

LUMO 2-NT

LUMO 2,4-DNT

HOMO 1,3,5-TMB

LUMO TNP

LUMO 1,2,4-TMB

LUMO 1,3,5-TMB

HOMO 2,4-DNP

HOMO o-nitro phenol

HOMO p-nitrophenol

LUMO o-nitro phenol

LUMO p-nitrophenol

Fig. S32 HOMO-LUMO plots for H₄ddn, 1 and aromatic analytes. Table S1 Crystal data and structure refinement for 1

$C_{44}H_{19}N_3O_{26}Zn_4$
1267.10
150.00(10)
orthorhombic
$P2_{1}2_{1}2_{1}$
17.4270(2)
22.7852(8)
25.2350(7)

α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	10020.3(5)			
Z	4			
$\rho_{calc}g/cm^3$	0.840			
μ/mm^{-1}	1.499			
F(000)	2528.0			
Index ranges	$\text{-}21 \leq h \leq 20, \text{-}14 \leq k \leq 28, \text{-}26 \leq l \leq 31$			
Reflections collected	38476			
Independent reflections	18163 $R_{int} = 0.0438$, $R_{sigma} = 0.0641$]			
Data/restraints/parameters	18163/115/694			
Goodness-of-fit on F ²	0.855			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0455, wR_2 = 0.1078$			
Final R indexes [all data]	$R_1 = 0.0736, wR_2 = 0.1208$			
Largest diff. peak/hole / e Å ⁻³ 0.45/-0.38				
Flack parameter	0.407(17)			

Table S2Bond Lengths and angles for 1

2.9459(6)	Zn01-	O16 ²	2.002(3)
1.943(4)	Zn01-	O23	1.952(3)
2.101(4)	Zn01-	O20	2.041(5)
1.958(3)	Zn02-	O15 ⁵	2.002(3)
2.064(4)	Zn02-	O19 ²	2.003(4)
2.052(4)	Zn03-	014	1.931(6)
2.030(5)	Zn03-	O10	2.020(4)
2.060(7)	Zn03-	012	2.146(7)
1.925(4)	Zn04-	09	1.747(9)
	2.9459(6) 1.943(4) 2.101(4) 1.958(3) 2.064(4) 2.052(4) 2.030(5) 2.060(7) 1.925(4)	2.9459(6) Zn01- 1.943(4) Zn01- 2.101(4) Zn01- 1.958(3) Zn02- 2.064(4) Zn02- 2.052(4) Zn03- 2.030(5) Zn03- 2.060(7) Zn03- 1.925(4) Zn04-	2.9459(6) Zn01- O16 ² 1.943(4) Zn01- O23 2.101(4) Zn01- O20 1.958(3) Zn02- O15 ⁵ 2.064(4) Zn02- O19 ² 2.052(4) Zn03- O14 2.030(5) Zn03- O10 Zn03- 010 Zn03- 010 Zn03- O12 1.925(4) Zn04- O9

O16 ¹ - Zn01- O20	160.93(13)
O24- Zn02-O44	103.16(14)
O24- Zn02-O86	95.00(14)
O14- Zn03-O1 ⁵	141.05(17)
O11- Zn03-O12	173.5(2)
O21- Zn04-O13	86.9(3)

¹1/2+X,1/2-Y,2-Z; ²-1/2+X,1/2-Y,2-Z; ³1-X,-1/2+Y,3/2-Z; ⁴3/2-X,1-Y,1/2+Z; ⁵1+X,+Y,+Z; ⁶2-X,-1/2+Y,3/2-Z; ⁷-1+X,+Y,+Z

Material	Sensitivity	Reference
$Eu(acac)_3 @Zn(C_{15}H_{12}NO_2)_2$	5×10-3 M	1
$Eu(C_{33}H_{24}O_{12})(H_2NMe)(H_2O)$	2×10-4 M	2
Eu(C ₂₂ H ₁₄ O ₂) ₃	10 ⁻⁴ M	3
[Eu(BTPCA)(H ₂ O)]·2DMF·3H ₂ O	10 ⁻⁵ M	4
MIL-53(Al)	0.9×10 ⁻⁶ M	5
${[LnCd_2(DTPA)_2(H_2O)_4]\cdot 4H_2O}$	1.5×10 ⁻⁵ M	6
carbon nanoparticles (CNPs)	0.32×10 ⁻⁶ M	7
Fluorescent Gold Nanoclusters	5.4×10 ⁻⁶ M	8
[Cd ₃ (dpa)(DMF) ₂ (H ₂ O) ₃]·DMF	1.75×10 ⁻⁴ M	9
Zn ₃ L ₃ (DMF) ₂	10 ⁻⁵ M	10
$[[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$	1.0×10 ⁻⁴ M	11
$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	10 ⁻⁶ M	12
$[H_2N(Me)_2][Eu_3(OH)(bpt)_3(H_2O)_3]$	10 ⁻⁵ M	13
$(DMF)_2 \cdot (H_2O)_4$		
$[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$	10 ⁻⁵ M	14
TbL	10 ⁻⁶ M	15
$[Eu(HL)(H_2O_2)] \cdot 2H_2O$	3.0×10 ⁻⁴ M	16
1	2.3×10 ⁻⁵ M	In this work

Table S3 Comparison of the selected materials in detective sensitivity for Fe³⁺ ions

References:

- [1] G. G. Hou, Y. Liu, Q. K. Liu, J. P. Ma and Y. B. Dong, Chem. Commun.2011, 47, 10731-10733.
- [2] S. Dang, E. Ma, Z.M. Sun and H. J. Zhang, J. Mater. Chem. 2012, 22, 16920-16926.
- [3] M. Zheng, H. Q. Tan, Z. G. Xie, L. G. Zhang, X. B. Jing and Z. C. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 1078-1083.
- [4] Q. Tang, S. X. Liu, Y. W. Liu, J. Miao, S. J. Li, L. Zhang, Z. Shi and Z. P. Zheng, *Inorg. Chem.*2013, 52, 2799-2801.
- [5] C. X. Yang, H. B. Ren and X. P. Yan, Anal. Chem. 2013, 85, 7441-7446.
- [6] Q. Liu, F. Wan, L. X. Qiu, Y. Q. Sun and Y. P. Chen, RSC Adv., 2014, 4, 27013-27021.
- [7] K. G. Qu, J. S. Wang, J. S. Ren and X. G. Qu, Chem. Eur. J. 2013, 19, 7243-7249.
- [8] J.-A. A. Ho, H.-C. Chang and W.-T. Su, Anal. Chem. 2012, 84, 3246-3253.
- [9] J. C. Jin, L. Y. Pang, G. P. Yang, L. Hou and Y. Y. Wang, Dalton Trans., 2015,

44, 17222–17228.

[10] Z. C. Yu, F. Q. Wang, X. Y. Lin, C. M. Wang, Y. Y. Fu, X. J. Wang, Y. N. Zhao and G. D. Li, *J. Solid. State. Chem.*, 2015, *232*, 96-101.

[11] X. H. Zhou, L. Li, H. H. Li, T. Yang and W. Huang, *Dalton Trans.*, 2013, **42**, 12403–12409.

[12] X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang and T. C. W. Mak, *J. Mater. Chem.* A, 2015, *3*, 641–647.

- [13] S. Xing, Q. Bing, L. Song, G. Li, J. Liu, Z. Shi, S. Feng and R. Xu, Chem. Eur. J., 2016, 22, 16230-16235.
- [14] X. Zhou, L. Li, H. Li, A. Li, T. Yang and W. Huang, *Dalton Trans.*, 2013, **42**, 12403-12409.
- [15] S. Dang, T. Wang, F. Yi, Q. Liu, W. Yang and Z. Sun, *Chem. Asian J.*, 2015, 10, 1703-1709.
- [16] Y. Liang, G. Yang, B. Liu, Y. Yan, Z. Xi and Y. Wang, *Dalton Trans.*, 2015, 44, 13325-13330.