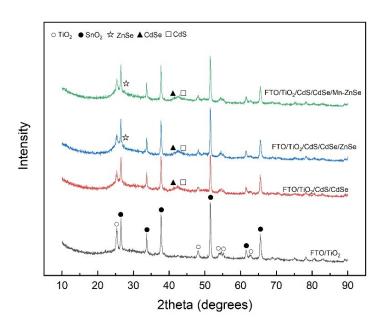

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary information


Impacts of the Mn-ion in the ZnSe Passivation on Electronic Band Structure for High Efficiency CdS/CdSe Quantum Dots Solar Cells

Shuqi Lu,^a Shanglong Peng,^{*a} Zhiya Zhang,^a Yunlong Deng,^a Tianfeng Qin,^a Juanjuan Huang,^a Fei Ma,^a Juan Hou,^{*b} and Guozhong Cao^{*a,b}

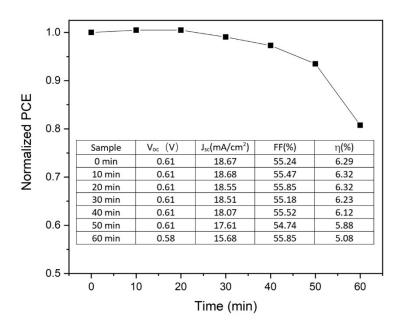

- a. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China. E-mail: pengshl@lzu.edu.cn.
- b. Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States. E-mail: gzcao@u.washington.edu.

Figure S1. SEM cross-sectional image of the photoanode. It's obviously that the thickness of deposited TiO_2 film is about 25 μ m.

Figure S2. XRD pattern of FTO/TiO₂, FTO/TiO₂/QDs, FTO/TiO₂/QDs/ZnSe and FTO/TiO₂/QDs/Mn-ZnSe films.

Figure S3. Stability of QDSSCs with passivation layer of Mn-ZnSe. The inset table is photovoltaic parameters corresponding to different time.