Electronic Supplementary Information

For the Manuscript Entitled

Polymerization led selective detection and removal of Zn²⁺ and Cd²⁺ ions:

Isolation of Zn- and Cd-MOFs and reversibility studies

Saurabh Pandey, Pramod Kumar and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi – 110 007

Figure S1. FTIR spectrum of chemosensor L1.

Figure S2. FTIR spectrum of chemosensor L2.

Figure S3. ¹H (top) and ¹³C NMR (bottom) spectra of chemosensor L1 in DMSO-d₆ where * represents the residual solvent peak(s).

Figure S4. ¹H (top) and ¹³C NMR (bottom) spectra of chemosensor L2 in DMSO-d₆ where * represents the residual solvent peak(s).

Figure S5. ESI⁺ mass spectrum of chemosensor L1 in CH₃OH.

Figure S6. ESI⁺ mass spectrum of chemosensor L2 in CH₃OH.

Figure S7. UV-visible spectra of chemosensors L1 (red trace) and L2 (blue trace) (20 μ M) in CH₃OH.

Figure S8. Determination of binding constants for Cu^{2+} , Ni^{2+} , Co^{2+} and Mn^{2+} ions by chemosensors (a) L1 and (b) L2 from the UV-visible titrations (at 332 nm) using Benesi-Hildebrand plots in CH₃OH.

Figure S9. (a) Selectivity of chemosensor L1 towards Zn^{2+} ion in presence of other metal ions: L1 + metal ions (green pillars); and L1 + metal ions + Zn^{2+} ion (blue pillars). (b) Selectivity of chemosensor L1 towards Cd^{2+} ion in presence of other metal ions: L1 + metal ions (green pillars); and L1 + metal ions + Cd^{2+} ion (purple pillars).

Figure S10. (a) Selectivity of chemosensor L2 towards Zn^{2+} ion in presence of other metal ions: L2 + metal ions (blue pillars); and L2 + metal ions + Zn^{2+} ion (red pillars). (b) Selectivity of chemosensor L2 towards Cd^{2+} ion in presence of other metal ions: L2 + metal ions (blue pillars); and L2 + metal ions + Cd^{2+} ion (yellow pillars).

Figure S11. Change in absorbance of chemosensors L1 (20 μ M) and L2 (20 μ M) with 1 equivalent of Zn²⁺/Cd²⁺ (20 μ M) ions in CH₃OH.

Figure S12. Benesi-Hildebrand plots for the detection of Zn^{2+} and Cd^{2+} ions by chemosensors L1 and L2.

Figure S13. Change in absorbance of chemosensors L1/L2 varied as a function of (a) $[Zn^{2+}]/[L1]$; (b) $[Cd^{2+}]/[L1]$; (c) $[Zn^{2+}]/[L2]$; (d) $[Cd^{2+}]/[L2]$.

Figure S14. Change in absorbance of chemosensors L1/L2 at 332 nm in methanol with the increase in the concentration of Zn^{2+} or Cd^{2+} ion. $[L1] = [L2] = 2.0 \times 10^{-5}$ M.

Figure S15. Determination of detection limits by the UV-visible titration for Zn^{2+} and Cd^{2+} ions by using chemosensors L1 and L2.

Figure S16. Illustration of effect of concentration on the polymerization-led-precipitation: (a) L1 and (b) L2 in presence of Zn^{2+} and Cd^{2+} ions at 20 μ M and 2 mM concentrations.

Figure S17. Visible light naked eye detection of (a) Zn^{2+} ion by chemosensor L1; (b) Zn^{2+} ion by chemosensor L2; (c) Cd^{2+} ion by chemosensor L1 and (d) Cd^{2+} ion by chemosensor L2 in different solvent systems via precipitation. Zinc acetate and cadmium acetate were used for all the studies.

Figure S18. Precipitation induced by different (a) Zn(II) salts; and (b) Cd(II) salts for chemosensor L1 in methanol.

Figure S19. Change in emission of chemosensor (a) L1 (1 μ M) (b) L2 (1 μ M) after the addition of 1 equivalent of metal ions (1 μ M) in CH₃OH ($\lambda_{ex} = 230$ nm).

Figure S20. Change in the emission of chemosensor L1 with different equivalents of Zn^{2+} and Cd^{2+} ions in CH₃OH ($\lambda_{ex} = 230$ nm).

Figure S21. Change in the emission of chemosensor L2 with different equivalents of Zn^{2+} and Cd^{2+} ions in CH₃OH ($\lambda_{ex} = 230$ nm).

Figure S22. FTIR spectrum of Zn(II)-L1.

Figure S23. FTIR spectrum of Cd(II)-L1.

Figure S24. FTIR spectrum of Zn(II)-L2.

Figure S25. FTIR spectrum of Cd(II)-L2.

Figure S26. Thermal Gravimetric Analysis (TGA) plots for Zn(II)-L1 (red trace), Cd(II)-L1 (blue trace), Zn(II)-L2 (green trace) and Cd(II)-L2 (wine trace).

Figure S27. X-ray powder diffraction patterns for as-synthesized Cd(II)-L1 (black trace) and the one simulated from Mercury 3.0 using single crystal diffraction data (blue trace) of Cd(II)-L1.

Figure S28. X-ray powder diffraction patterns for as-synthesized **Zn(II)-L1** (black trace) and the one simulated from Mercury 3.0 using single crystal diffraction data (blue trace) of **Cd(II)-L1**.

Figure S29. Change in absorbance of chemosensor (a) L1 (20 μ M) with 1 equivalent of Zn(NO₃)₂ (20 μ M) ion (b) L1 (20 μ M) with 1 equivalent of Cd(NO₃)₂ (20 μ M) ion (c) L2 (20 μ M) with 1 equivalent of Zn(NO₃)₂ (20 μ M) ion (d) L2 (20 μ M) with 1 equivalent of Cd(NO₃)₂ (20 μ M) ion in CH₃OH.

Figure S30. Partial ¹H NMR spectra of chemosensor L1 (dark cyan trace) and after the addition of $Cd(NO_3)_2$ (wine trace) recorded in DMSO-d₆ solvent. * represents the C(O)–H proton of DMF molecule.

C Cd(II)-L1 + NaNO₃ + HCl

Figure S31. ¹H NMR spectrum of (a) L1 (black trace); (b) Cd(II)-L1 after the addition of NaNO₃ (green trace); and (c) after further addition of HCl (wine trace).

Figure S32. ¹H NMR spectrum of (a) L2 (black trace); (b) Zn(II)-L2 after the addition of NaNO₃ (green trace); and after (c) further addition of HCl (wine trace).

Figure S33. ¹H NMR spectrum of L1 (black trace) and Cd(II)-L1 (green trace) after the addition of HCl maintaining pH = 6 (green trace).

Figure S34. FTIR spectra of L1 (red trace) and L1–NO₃ adduct (blue trace).

Figure S35. FTIR spectrum of isolated cadmium nitrate salt from a reaction of Cd-MOF with NaNO₃ in DMSO.

Figure S36. Topological representation of (a) Cd(II)-L1-A and Cd(II)-L1-B along (b) *a*- and (c) *c*-axis, respectively. Color code: yellow, Cd; green, contribution from L1.

Table S1. Binding constants (K_b) for Cu²⁺, Ni²⁺, Co²⁺ and Mn²⁺ ions by chemosensors L1 and L2 from UV-visible titrations (at 332 nm) using Benesi-Hildebrand plots in CH₃OH.

Species	Kb (M ⁻¹)	Species	Kb (M ⁻¹)
$L1 + Cu^{2+}$	1.24 x 10 ²	$L2 + Cu^{2+}$	8.37 x 10 ²
$L1 + Ni^{2+}$	6.38 x 10 ²	$L2 + Ni^{2+}$	1.01 x 10 ³
$L1 + Co^{2+}$	7.99 x 10 ²	$L2 + Co^{2+}$	$1.06 \ge 10^3$
$L1 + Mn^{2+}$	1.56 x 10 ³	$L2 + Mn^{2+}$	3.58 x 10 ³
$L1 + Zn^{2+}$	2.90 x 10 ⁴	$L2 + Zn^{2+}$	3.38 x 10 ⁴
$L1 + Cd^{2+}$	2.99 x 10 ⁴	$L2 + Cd^{2+}$	3.28 x 10 ⁴

Complex	Cd(II)-L1-B	Zn(II)-L2	Cd(II)-L2	
CCDC No.	1863806	1828072	1828071	
Formula	C99 H109 Cd3 N15 O38	C33 H47 Zn N5 O18	C33 H47 Cd N5 O18	
$\mathbf{F}\mathbf{w}$	2454.22	867.13	914.15	
T(K)	100(2) K	273(2) K	100(2) K	
Crystal System	orthorhombic	monoclinic	monoclinic	
Space Group	$P2_{1}2_{1}2_{1}$	<i>I2/c</i>	C2/c	
a(Å)	14.3557(9)	18.5144(18)	22.987(7)	
b(Å)	24.1536(15)	13.2579(13)	12.635(3)	
c(Å)	33.691(2)	18.8316(18)	19.051(5)	
α(°)	90°	90°	90°	
β(°)	90°	105.277(9)°	124.699(11)°	
γ(°)	90°	90°	90°	
V(Å ³)	11682.1(3)	4459.1(8)	4549(2)	
Ζ	4	4	4	
$d(Mg/m^3)$	1.395	1.292	1.335	
F(000)	4826	1336	1408	
Goodness-of-fit on F ²	1.084	1.041	1.113	
$R_1, wR_2 [I > 2(I)]$	0.0548, 0.1439	0.1077, 0.2820	0.1031, 0.2545	
R_1, wR_2 [all data]	0.0648, 0.1554	0.1808, 0.3225	0.1142, 0.2608	
${}^{a}R_{1} = \sum [F_{o} - F_{c} / \sum F_{o} ; wR_{2} = \{\sum [w(/ F_{o} ^{2} - F_{c} ^{2})^{2}] / \sum [wF_{o}^{4}]\}^{1/2}$				

Table S2. Crystallographic data collection and structure refinement parameters for Cd(II)-L1-B,Zn(II)-L2 and Cd(II)-L2.

Bond Length (Å)						
Bond	Cd(II)-L1-B	Zn(II)-L2	Cd(II)-L2			
N(1)-M(1)	2.350(6)	2.226(7)	2.373(8)			
N(2)-M(1)	2.296(6)	1.967(14)	2.258(10)			
N(3)-M(1)	2.366(7)					
O(2)-M(1)			2.584(7)			
O(3)-M(1)	2.462(5)	1.990(5)	2.277(6)			
O(4)-M(1)	2.313(5)					
O(5)-M(1)	2.295(7)					
O(6)-M(1)	2.714(1)					
Bond Angle (Å)						
	Cd(II)-L1-B	Zn(II)- L2	Cd(II)-L2			
N(2)-M(1)-N(1)	70.1(2)	76.8(2)	70.65(19)			
N(2)- M(1) O(3)	93.27(19)	130.54(18)	137.75(18)			
N(2)- M(1) O(2)			84.99(17)			
N(1)- M(1) O(2)			88.7(2)			
O(3)- M(1)-N(1)	96.1(2)	99.7(2)	102.9(3)			
N(2)- M(1)-N(3)	70.4(2)					
O(3)- M(1)-N(3)	84.6(2)					
N(3)- M(1)-N(1)	140.5(2)					
N(2)- M(1)-O(5)	99.9(3)					
O(3)- M(1)-O(5)	166.8(3)					
N(3)- M(1)-O(5)	100.4(2)					
O(5)- M(1)-N(1)	87.7(3)					
N(2)- M(1)-O(6)	142.0(3)					
O(3)- M(1)-O(4)	54.48(17)					
N(3)- M(1)-O(6)	90.1(3)					
O(4)- M(1)-O(5)	112.7(2)					
N(1)- M(1)-O(6)	122.9(3)					
Where $M(1) = Zn^{2+}$ [for Zn(II)-L2] and Cd ²⁺ [for Cd(II)-L1-B and Cd(II)-L2].						

 Table S3. Selected bond distances and angles for Cd(II)-L1-B, Zn(II)-L2 and Cd(II)-L2.