Electronic Supplementary Information for:

May. 8, 2018 (Dalton Trans.)

Group 2 Metal Bis(arenecarbochalcogenoato)(Crown Ether) Complexes: Isolation and Structural Analysis

Yoshiharu Tatematsu,^a Shinzi Kato,^{a,b*} Norio Nakata,^a Masahiro Ebihara,^{a*}

Osamu Niyomura,^b Koh Sugamata,^c Mariko Yukimoto,^c and Mao Minoura^{c*}

Received (in XXX, XXX) Xth XXXXXXXX 200X,

^aDepartment of Chemistry, School of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
Email: <u>kshinzi@nifty.com</u>, <u>ebihara@gifu-u.ac.jp</u>
^bDepartment of Applied Chemistry, College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501, Japan.
^cDepartment of Chemistry, College of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

Email: <u>minoura@rikkyo.ac.jp</u>

Keywords: Alkali-earth metal carbochalcogenoates/Group 2 metal complexes/ Calcium thioates/Strontium carboselenoates/Crown ether complexes

Table of Contents

1.	. Experimental section	
2.	X-Ray structure analyses	24
3.	Spectroscopic measurement	37
4.	References	38

1. Experimental section

1.1 General considerations

Melting points were determined with a Yanagimoto micro melting point apparatus, and are uncorrected. IR spectra were recorded on a Perkin-Elmer FT-IR 1640 spectrophotometer. ¹H, ¹³C and ⁷⁷Se NMR were recorded on a JEOL JNM- α 400 instrument at 399.7, and 100.4, and 76.2 MHz, respectively, in DMSO- d_6 or acetone- d_6 containing tetramethylsilane or dimethyl selenide as internal standard. Elemental analyses were performed by the Elemental Analysis Center of Kyoto University.

Potassium arenecarbothioates^{S1} and sodium^{S2} and potassium arenecarboselenoates^{S3} and potassium arenecarbodithioates^{S4} were prepared according to the procedures described in the literatures. Anhydrous MgI₂, CaI₂, SrI₂, SrI₂·5.5H₂O and BaI₂ were purchased from Wako Pure Chemical Ind. Ltd. and used without further purification. Crown ethers [15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) and 18-crown-6 ethers (1,4,7,10,13,16-hexaoxacyclooctadecane)] were purchased from Aldrich and used without further purification. The following solvents were purified under argon and dried as indicated: hexane and tetrahydrofuran (thf), refluxed with sodium metal using benzophenone as indicator and distilled before use: acetone and acetonitrile, distilled over calcium dichloride anhydride, after refluxing for 5 h. All manipulations were carried out under argon.

1.2 Syntheses

Calcium bis(arenecarbothioato)(L) ($L = H_2O$ or THF) 4

Calcium bis(4-methylbenzenecarbothioato)(H_2O)_{2,3} **4ba**. A suspension of potassium 4methylbenzenecarbothioate **1b** (0.909 g, 4.70 mmol) in H₂O (15 mL) was added to calcium diiodide (0.690 g, 2.35 mmol) in the same solvent (3 mL) and the mixture was stirred at 24 °C for 1.5 h. The resulting precipitates were filtered off by the use of glass filter. Removal of the solvent under reduced pressure (23 °C/0.4 Pa) gave pale yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 18 °C for 30 min. Filtration of the insoluble parts gave 0.173 g (17%) of the compound **4ba** as pale yellow micro crystals, m.p. 172–178 °C (decomp.) (Found: C, 55.58; H, 4.82; Calc. for C₂₀H_{20.3}CaO_{4.3}S₂ (433.68): C, 55.39; H, 4.72%); v_{max} (KBr)/cm⁻¹ 3442, 3360 (br), 2912, 2866, 1612 (COS), 1598, 1523, 1445, 1385, 1310, 1246, 1210, 1157, 1110, 1022, 984, 831 and 728; $\delta_{\rm H}$ (400 MHz; DMSO– d_6 ; Me₄Si) 2.17 (6 H, s, CH₃), 3.46 (2 H, b, H_2 O), 7.02 (4 H, d, J = 8.7 Hz, arom) and 8.14 (4H, d, J = 8.7 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 21.6 (*C*H₃), 126.8, 128.0, 139.3, 142.6 (arom) and 212.6 (*C*SO).

Calcium bis(4-methylbenzenecarbothioato)(*THF*) **4bb**. A suspension of potassium 4methylbenzenecarbothioate **1b** (0.917 g, 4.84 mmol) in THF (7 mL) was added to calcium diiodide (0.711 g, 2.42 mmol) in the same solvent (3 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off by a glass filter. Removal of the solvent under reduced pressure (26 °C/0.1 Pa) gave yellow solid. Hexane (5 mL) was added to the solid and the mixture was stirred at 20 °C for 1 h. Filtration of the insoluble parts gave 0.431 g (43%) of the compound **4bb** as pale yellow micro crystals, m.p. 187–193 °C (decomp.) (Found: C, 58.04; H, 5.43. Calc. for $C_{20}H_{22}CaO_3S_2$ (414.594): C, 57.94; H, 5.35%); v_{max} (KBr)/cm⁻¹ 3018, 1615 (COS), 1598, 1502, 1446, 1375, 1311, 1249, 1212, 1157, 1110, 1016, 983, 833 and 728; $\delta_{\rm H}$ (400 MHz; DMSO–*d*₆; Me₄Si) 1.87 (4 H, t, OC*H*₂), 2.19 (6 H, s, C*H*₃), 3.81 (4 H, t, C*H*₂), 7.22 (4 H, d, *J* = 8.7 Hz, arom) and 8.17 (4 H, d, *J* = 8.7 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 21.5 (CH₃), 25.4 (THF-CH₂), 67.7 (THF-OCH₂), 127.3, 128.1, 138.7, 141.9 (arom) and 210.1 (CSO).

Strontium bis(4-methylbenzenecarbothioato)(H_2O)_{1,2}(THF) **5b**. A suspension of potassium 4-methylbenzenecarbothioate 5b (0.992 g, 5.24 mmol) in THF (7 mL) was added to SrI₂·5.5H₂O (1.155 g, 2.62 mmol) in the same solvent (3 mL) and the mixture was stirred at 23 °C for 1 h. The resulting precipitates were filtered off. Removal of the solvent under reduced pressure (23 °C/0.1 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.456 g (36%) of the compound 5b containing both molecules of THF and H₂O as pale yellow micro crystalline solid, m.p. 167–175 °C (decomp.) (Found: C, 49.82; H, 5.27; Calc. for C₂₀H_{24.2}O_{4.2}S₂Sr (483.55): C, 49.68; H, 5.04%); $v_{\rm max}$ (KBr)/cm⁻¹ 3426, 3268 (br), 1602 (COS), 1567, 1468, 1305, 1242, 1210, 1105, 1035, 1010, 978, 875, 817, 778, 707, 664, 613 and 542; $\delta_{\rm H}(400 \text{ MHz}; \text{ acetone-} d_6;$ Me₄Si) 1.80 (4 H, t, OCH₂), 2.18 (6 H, s, CH₃), 3.34 (2 H, b, H₂O), 3.82 (4 H, t, CH₂), 7.17 (4 H, d, J = 7.8 Hz, arom) and 8.34 (4 H, d, J = 8.3 Hz, arom); $\delta_{\rm C}(100$ MHz; acetone-d₆; Me₄Si) 21.7 (CH₃), 25.5 (THF-CH₂), 68.4 (THF-OCH₂), 68.8 (OCH₂), 126.4, 127.9, 142.0, 141.8 (arom) and 213.4 (CSO).

Barium bis(4-methylbenzenecarbothioato)(THF) **6**. A suspension of potassium 4methylbenzenecarbothioate **5b** (0.765 g, 4.02 mmol) in THF (7 mL) was added to BaI_2 (0.786 g, 2.01 mmol) in the same solvent (3 mL) and the mixture was stirred at 21 °C for 1 h. The white precipitates (KI) were filtered off. Removal of the solvent under reduced pressure (21 °C/0.2 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.739 g (71%) of the compound **6b** as pale yellow micro crystalline solid, m.p. 177–185 °C (decomp.) (Found: C, 46.74; H, 4.53. Calc. for C₂₀H₂₂BaO₃S₂ (511.84): C, 46.93; H, 4.33%); v_{max} (KBr)/cm⁻¹ 2938, 2878, 1605 (COS), 1571, 1456, 1305, 1234, 1210, 1105, 1033, 1009, 977, 864, 817, 778, 715, 676, 643, 612, 509 and 486; $\delta_{\rm H}$ (400 MHz; acetone- d_6 ; Me₄Si) 1.86 (4 H, t, THF-CH₂), 2.18 (6 H, s, CH₃), 3.76 (4 H, t, THF-OCH₂), 7.07 (4 H, d, J = 7.8 Hz, arom) and 8.19 (4 H, d, J = 8.3 Hz, arom); $\delta_{\rm C}$ (100 MHz; acetone- d_6 ; Me₄Si) 21.3 (CH₃), 26.1 (THF-CH₂), 68.3 (THF-OCH₂), 128.5, 129.5, 141.5, 141.6 (arom) and 217.8 (CSO).

Magnesium bis(arenecarbothioato)(15-crown-5)(H_2O) 7

Magnesium bis(4-methylbenzenecarbothioato)(15-crown-5)(H_2O) 7b. A suspension of potassium 4-methylbenzenecarbothioate (1.147 g, 6.03 mmol) in THF (8 mL) was added to MgI₂ (0.862 g, 3.10 mmol) in the same solvent (2 mL) and the mixture was stirred at 23 °C for 1 h. The white precipitates (KI) were filtered off by a glass filter. The filtrate was added to 15-crown-5 (0.683 g, 3.10 mmol) in THF solution (6 mL), and the mixture was stirred at 22 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (22 °C/0.2 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 22 °C for 30 min. Filtration of the insoluble parts, followed by recrystallization from a mixed solvent hexane/diethyl ether (2:8) at -20 °C for 15 h, gave 0.715 g (21%) of the compound 7b as slight yellow micro crystals, m.p. 186-198 °C (decomp.) (Found: C, 55.54; H, 6.72; Calc. for $C_{26}H_{36}MgO_8S_2$ (564.99): C, 55.27; H, 6.42%); $\nu_{max}(KBr)/cm^{-1}$ 2940, 2887, 1605 (COS), 1573, 1487, 1467, 1353, 1291, 1250, 1204, 1162, 1092, 1043, 958, 827, 796, 726, 672, 654 and 636; δ_H(400 MHz; DMSO-d₆; Me₄Si) 2.19 (6 H, s, CH₃), 3.45 (20 H, s, OCH₂), 3.65 (2 H, b, H_2 O), 6.94 (4 H, d, J = 7.8 Hz, arom) and 7.90 (4 H, t, J = 8.3 Hz, arom); δ_C(100 MHz; DMSO-d₆; Me₄Si) 20.9 (CH₃), 69.7 (OCH₂), 127.3, 128.1, 138.3, 142.6 (arom) and 208.0 (CSO).

Magnesium bis(benzenecarbothioato)(*15-crown-5)*(*H2O*) **7a**. Yield: 27% (pale yellow needles): m.p. 162–167 °C (decomp.) (Found: C, 52.30; H, 6.21; Calc. for $C_{26}H_{36}MgO_{10}S_2$ (596.99): C, 52.31; H, 6.08%); v_{max} (KBr)/cm⁻¹ 2945, 2889, 1602 (COS), 1576, 1502, 1465, 1354, 1306, 1252, 1210, 1179, 1153, 1092, 1029, 947, 839,

796, 741, 656 and 631; $\delta_{\rm H}$ (400 MHz; DMSO- d_6 ; Me₄Si) 3.54 (20 H, s, OCH₂), 3.76 (6 H, s, OCH₃), 3.84 (2 H, b, H₂O), 6.77 (4 H, d, J = 8.3 Hz, arom) and 8.30 (4 H, t, J = 8.8 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO- d_6 ; Me₄Si) (OCH₃), 69.7 (OCH₂), 111.7, 129.8, 138.3, 160.3 (arom) and 206.8 (*C*=O).

Magnesium bis(4-*methoxybenzenecarbothioato*)(15-crown-5)(H_2O) **7c**. Yield: 34% as pale yellow micro crystals; m.p. 162–167 °C (decomp.) (Found: C, 52.30; H, 6.21; Calc. for C₂₆H₃₆MgO₁₀S₂ (596.99): C, 52.31; H, 6.08%); v_{max} (KBr)/cm⁻¹ 2945, 2889, 1602 (COS), 1576, 1502, 1465, 1354, 1306, 1252, 1210, 1179, 1153, 1092, 1029, 947, 839, 796, 741, 656 and 631; δ_{H} (400 MHz; DMSO- d_6 ; Me₄Si) 3.54 (20 H, s, OCH₂), 3.76 (6 H, s, OCH₃), 3.82 (2 H, b, H_2O), 6.77 (4 H, d, J = 8.3 Hz, arom) and 8.30 (4 H, t, J = 8.8 Hz, arom); δ_{C} (100 MHz; DMSO- d_6 ; Me₄Si) 55.1 (OCH₃), 69.7 (OCH₂), 111.7, 129.8, 138.3, 160.3 (arom) and 206.8 (*C*=O).

Magnesium bis(4-chlorobenzenecarbothioato)(15-crown-5)(H₂O) **7d**. Yield: 42% as pale yellow micro crystals; m.p. 142–148 °C (decomp.) (Found: C, 47.52; H, 5.03; Calc. for C₂₄H₃₀Cl₂MgO₈S₂ (605.83): C, 47.58; H, 4.99%); ν_{max} (KBr)/cm⁻¹ 2945, 2883, 1587 (COS), 1573, 1502, 1479, 1354, 1202, 1158, 1090, 961, 841 and 728; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.55 (20 H, s, OCH₂), 3.72 (2 H, b, *H*₂O), 7.27 (4 H, d, *J* = 8.8 Hz, arom) and 8.09 (4 H, t, *J* = 8.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.8 (OCH₂), 126.6, 129.6, 133.7, 144.0 (arom) and 205.5 (*C*=O).

Calcium bis(arenecarbothioato)(15-crown-5)(H_2O) 8

*Calcium bis(benzenecarbothioato)(15-crown-5)(H*₂*O)* **8a**. Similarly to **8b**, the reaction of potassium benzenecarbothioate **8a** (0.350 g, 3.57 mmol) with CaI₂ (0.310 g, 1.06 mmol) in THF (8 mL), followed by recrystallization from acetone (15 mL) at -20 °C for 5 days gave 0.023 g (4%) of the compound **8a** as slight yellow micro crystals, m.p. 181–187 °C (decomp.) (Found: C, 51.78; H, 6.81; Calc. for C₂₄H₃₂CaO₈S₂ (600.17): C, 51.98; H, 6.67%); v_{max} (KBr)/cm⁻¹ 2922, 2881, 1654 (COS), 1618, 1560, 1508, 1491, 1459, 1438, 1355, 1300, 1249, 1207, 1164, 1119, 1089, 1040, 957, 871, 857, 782, 698, 658 and 551; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.15 (20 H, s, OCH₂), 3.75 (2 H, b, H₂O), 7.25 (6 H, d, *J* = 7.0 Hz, arom) and 8.06 (4 H, d, *J* = 7.3 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 68.3 (OCH₂), 126.7, 127.8, 128.9, 144.9 (arom) and 208.6 (CSO).

Calcium bis(4-methylbenzenecarbothioato)(15-crown-5)(H_2O) **8b**. A suspension of potassium 4-methylbenzenecarbothioate (0.303 g, 1.59 mmol) in THF (8 mL) was

added to CaI₂ (0.248 g, 0.84 mmol) in the same solvent (2 mL) and the mixture was stirred at 21 °C for 1 h. The resulting white precipitates (KI) were filtered off. The filtrate was added to 15-crown-5 (0.127 g, 0.58 mmol) in THF solution (3 mL) and the mixture was stirred at 20 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.380 g (38%) of 8b as pale yellow micro crystalline solid. The solid was dissolved in acetone (15 mL). Hexane (5 mL) was slowly added, and the mixture was allowed to stand at -20 °C for 15 h. Filtration of the resulting crystals gave 0.200 g (20%) of the compound **8b** as yellow needles, m.p. 195–200 °C (decomp.) (Found: C, 53.39; H, 7.11. Calc. for $C_{26}H_{36}CaO_8S_2$ (628.85): C, 53.48; H, 7.05%); ν_{max} (KBr)/cm⁻¹ 2933, 2921, 2882, 1604 (COS), 1572, 1510, 1488, 1467, 1451, 1353, 1301, 1247, 1219, 1202, 1168, 1124, 1091, 1040, 954, 873, 834, 795, 727, 661, 634, 556, 521 and 493; $\delta_{\rm H}$ (400 MHz; DMSO-d₆; Me₄Si) 2.27 (6 H, s, CH₃), 3.53 (20 H, s, OCH₂), 3.67 (2 H, b, H_2 O), 7.03 (4 H, d, J = 8.3 Hz, arom) and 7.97 (4 H, t, J = 8.3 Hz, arom); δ_C (100 MHz; DMSO-d₆; Me₄Si) 20.8 (CH₃), 69.1 (OCH₂), 127.2, 128.0, 138.0, 142.8 (arom) and 207.3 (CSO).

Calcium bis(4-methoxybenzenecarbothioato)(15-crown-5)(H₂O) **8c**. Yield: 55% as pale yellow micro crystals, m.p. 169–174 °C (decomp.) (Found: C, 50.88; H, 6.76; Calc. for C₂₆H₃₆CaO₁₀S₂ (660.85): C, 50.89; H, 6.71%; v_{max} (KBr)/cm⁻¹ 3004, 2930, 2888, 2836, 1602 (COS), 1578, 1499, 1476, 1459, 1355, 1308, 1253, 1216, 1156, 1090, 1029, 949, 848, 671, 654, 544; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.52 (20 H, s, OCH₂), 3.74 (6 H, s, OCH₃), 3.81 (2 H, b, H₂O), 6.77 (4 H, d, *J* = 8.3 Hz, arom) and 8.07 (4 H, t, *J* = 8.7 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 55.1 (OCH₃), 69.9 (OCH₂), 111.8, 129.8, 137.8, 160.4 (arom) and 208.2 (*C*=S).

Calcium bis(4-chlorobenzenecarombothioato)(15-crown-5)(H_2O) **8d**. Yield: 48%; pale yellow micro crystals: m.p. 172–176 °C (decomp.) (Found: C, 46.52; H, 5.87; Calc. for C₂₆H₃₈CaCl₂O₉S₂ (669.69): C, 46.63; H, 5.72%); v_{max} (KBr)/cm⁻¹ 2967, 2932, 2882, 1654 (COS), 1584, 1571, 1498, 1492, 1477, 1450, 1355, 1248, 1203, 1160, 1085, 1046, 1013, 957, 841, 728 and 648; δ_{H} (400 MHz; DMSO- d_6 ; Me₄Si) 3.52 (20 H, s, OCH₂), 3.74 (2 H, b, H_2O), 7.27 (4 H, d, J = 8.8 Hz, arom) and 8.08 (4 H, t, J = 8.3 Hz, arom); δ_{C} (100 MHz; DMSO- d_6 ; Me₄Si) 69.9 (OCH₂), 126.7, 130.0, 134.0, 143.6 (arom) and 206.9 (*C*=S).

Calcium bis(arenecarbothioato)(18-crown-6) 9

Calcium bis(benzenecarbothioato)(18-crown-6) **9a**. Similarly to **9b**, the reaction of potassium benzenecarbothioate (0.340 g, 1.93 mmol) with CaI₂ (0.310 g, 1.05 mmol) in THF (10 mL), followed by recrystallization in a mixed solvent of acetonitrile/ethyl ether/hexane (6:3:1) at -20 °C for 24 h gave 0.279 g (46%) of the compound **9a** as pale yellow needles, m.p. 188–196 °C (decomp.) (Found: C, 54.01; H, 6.07; Calc. for C₂₆H₃₄CaO₈S₂ (578.75): C, 53.96; H, 5.92%); ν_{max} (KBr)/cm⁻¹ 3060, 2919, 1631 (COS), 1581 1491, 1466, 1436, 1352, 1299, 1249, 1205, 1166, 1101, 1027, 1001, 964, 881, 842, 781, 697, 655, 557, 467 and 414; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.51 (24 H, s, OC*H*₂), 7.27 (6 H, d, *J* = 7.2 Hz, arom) and 8.10 (4 H, d, *J* = 8.3 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.8 (OCH₂), 126.7, 127.9, 129.1, 144.8 (arom) and 209.1 (COS).

A suspension of *Calcium bis*(4-*methylbenzenecarbothioato*)(18-*crown*-6) **9b**. potassium 4-methylbenzenecarbothioate (0.361 g, 1.90 mmol) in THF (8 mL) was added to CaI₂ (0.323 g, 1.10 mmol) in the same solvent (2 mL) and the mixture was stirred at 24 °C for 1 h. The resulting precipitates (KI) were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.264 g, 1.00 mmol) in THF solution (4 mL), and the mixture was stirred at 24 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave pale yellow micro crystalline solid (0.523 g). The solid was dissolved in acetonitrile (18 mL). Hexane (7 mL) and ether (1 mL) were slowly added, and the mixture was allowed to stand at -20 °C for 24 h. Filtration of the resulting crystals gave 0.327 g (51%) of the compound 9b as pale yellow needles, m.p. 176–182 °C (decomp.) (Found: C, 53.54; H, 6.92; Calc. for C₂₈H₃₈CaO₈S₂ (582.78): C, 53.58; H, 6.88%.); v_{max} (KBr)/cm⁻¹ 2928, 2881, 2753, 1654 (COS), 1608, 1479, 1459 or 1450, 1353, 1287, 1251, 1218, 1205, 1163, 1099, 962, 830, 727, 668, 654, 637, 533, 471 and 458; $\delta_{\rm H}$ (400 MHz; DMSO- d_6 ; Me₄Si) 2.27 (6 H, s, CH₃), 3.49 (24 H, s, OCH₂), 7.03 (4 H, d, J = 8.3 Hz, arom) and 7.99 (4 H, t, J = 8.2 Hz, arom); $\delta_{\rm C}(100$ MHz; DMSO-d₆; Me₄Si) 20.8 (CH₃), 69.8 (OCH₂), 127.3, 128.1, 138.6, 142.2 (arom) and 209.2 (COS).

Calcium bis(4-methoxybenzenecarbothioato)(18-crown-6) **9c**. Yield: 28%; pale yellow micro crystals: m.p. 146–151 °C (decomp.) (Found: C, 50.58; H, 6.30; Calc. for $C_{26}H_{38}CaO_{10}S_2$ (614.78): C, 50.79; H, 6.23%); v_{max} (KBr)/cm⁻¹ 2922, 2836, 1603

(COS), 1578, 1500 or 1490, 1459, 1407, 1352, 1307, 1258, 1214, 1156, 1102, 1030, 958, 842, 742, 655, 627, 542 and 509; $\delta_{\rm H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.50 (24 H, s, OC*H*₂), 3.74 (6 H, s, OC*H*₃), 6.77 (4 H, d, *J* = 8.8 Hz, arom) and 8.07 (4 H, t, *J* = 8.8 Hz, arom); $\delta_{\rm C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 55.1 (OCH₃), 69.8 (OCH₂), 111.8, 129.7, 137.9, 60.4 (arom) and 208.0 (COS).

Calcium bis(4-chlorobenzenecarbothioato)(18-crown-6) **9d**. Yield: 17%; pale yellow micro crystals: m.p. 173–177 °C (decomp.) (Found: C, 46.01; H, 5.57; Calc. for C₂₄H₃₄CaCl₂O₈S₂ (625.64): C, 46.07; H, 5.48%); v_{max} (KBr)/cm⁻¹ 2930, 1587 (COS), 1573, 1480, 1463, 1453, 1352, 1287, 1251, 1200, 1158, 1098, 1014, 963, 838, 729, 648, 630, 611 and 489; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.49 (24 H, s, OC*H*₂), 7.27 (4 H, d, J = 8.8 Hz, arom) and 8.08 (4 H, t, J = 8.3 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 69.8 (OCH₂), 126.6, 129.6, 133.9, 143.6 (arom) and 206.8 (COS).

Strontium bis(arenecarbothioato)(15-crown-5) 10

Strontium bis(benzenecarbothioato)(15-crown-5) **10a**. Similarly to **10c**, the reaction of potassium benzenecarbothioate (0.380 g, 2.16 mmol) and 15-crown-5 (0.248 g, 1.13 mmol) with SrI₂·5.5H₂O (0.494 g, 1.12 mmol) in THF (10 mL) at 23 °C for 1 h, followed by recrystallization from a mixed solvent of acetonitrile/hexane/diethyl ether (5:1.2:1) (37 mL) at -20 °C for 2 days gave 0.052 g (8%) of the compound **10a** as pale yellow needles, m.p. 173–178 °C (decomp.) (Found: C, 47.24; H. 5.48, Calc. for C₂₂H₃₀O₇S₂Sr (558.05): C, 47.34; H, 5.42%); v_{max} (KBr)/cm⁻¹ 2924, 2865, 2832, 1556, (COS), 1506, 1502, 1485, 1464, 1437, 1342, 1302, 1256, 1203, 1162, 1098, 948, 841, 786, 706, 654 and 546; δ_{H} (400 MHz; acetone- d_6 ; Me₄Si) 3.25 (20 H, s, OCH₂), 7.14 (4 H, t, *J* = 8.3 Hz, arom) and 8.09 (4 H, d, *J* = 7.8 Hz, arom); δ_{C} (100 MHz; acetone- d_6 ; Me₄Si) 69.9 (OCH₂), 126.8, 128.2, 129.7, 143.8 (arom) and 212.5 (COS).

Strontium bis(4-methylbenzenecarbothioato)(15-crown-5) **10b**. Similarly to **10c**, the reaction of potassium 4-methylbenzenecarbothioate (0.365 g, 1.92 mmol) and SrI₂·5.5H₂O (0.471 g, 1.07 mmol) with15-crown-5 (0.298 g, 1.13 mmol) in THF (10 mL) at 20 °C for 1 h, followed by recrystallization from a mixed solvent of acetonitrile/hexane/diethyl ether (2:1:1.5) (18 mL) at -20 °C for 5 days, gave 0.113 g (18%) of the compound **10b** as pale yellow crystals, m.p. 165–170 °C (decomp.) (Found: C, 49.34; H, 5.78; Calc. for C₂₄H₃₄O₇S₂Sr (586.27): C, 49.17; H, 5.85%); v_{max} (KBr)/cm⁻¹ 2923, 2877, 2833, 1566 (COS), 1504, 1487, 1460, 1438, 1352, 1310, 1252, 1206, 1163, 1115, 955, 843, 791, 724, 676, 655 and 551; $\delta_{\rm H}$ (400 MHz; acetone- d_6 ;

Me₄Si) 2.33 (6 H, s, CH₃), 3.83 (20 H, s, OCH₂), 7.13 (4 H, t, J = 8.3 Hz, arom) and 8.22 (4 H, d, J = 7.8 Hz, arom); $\delta_{C}(100$ MHz; acetone- d_{6} ; Me₄Si) 22.2 (CH₃), 71.2 (OCH₂), 127.9, 129.2, 130.7, 142.1 (arom) and 213.8 (COS).

Strontium bis(4-methoxybenzenecarbothioato)(15-crown-5) 10c. A suspension of potassium 4-methoxybenzenecarbothioate (0.441 g, 2.07 mmol) in THF (8 mL) was added to SrI₂·5.5H₂O (0.436 g, 0.99 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by the use of glass filter. The filtrate was added to 15-crown-5 (0.226 g, 1.03 mmol) in THF solution (6 mL), and the mixture was stirred at 19 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (20 °C/0.4 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave pale yellow micro crystalline solid (0.522 g). The solid was dissolved in acetonitrile (13 mL). Hexane (3 mL) and diethyl ether (4 mL) were slowly added and the mixture was allowed to stand at -20 °C for 6 days. Filtration of the resulting crystals gave 0.057 g (8%) of the compound 10c as pale yellow crystals, m.p. 168-173 °C (decomp.) (Found: C, 49.24; H, 5.78; Calc. for C₂₄H₃₄O9S₂Sr (618.07): C, 49.17; H, 5.85%); v_{max} (KBr)/cm⁻¹ 2924, 2837, 2832, 1562 (COS), 1505, 1501, 1486, 1464, 1428, 1355, 1308, 1232, 1202, 1153, 1072, 1022, 956, 844, 721, 704, 656, 625, 581 and 482; $\delta_{\rm H}(400 \text{ MHz}; \text{ acetone-}d_6; \text{Me}_4\text{Si})$ 3.63 (20 H, s, CH₂), 3.81 (6 H, s, OCH₃), 7.09 (4 H, t, J = 8.3 Hz, arom) and 8.12 (4 H, d, J = 7.8 Hz, arom); $\delta_{C}(100$ MHz; acetone-d₆; Me₄Si) 55.2 (OCH₃), 69.7 (OCH₂), 116.2, 128.2, 137.78, 160.1 (arom) and 211.4 (COS).

Strontium bis(arenecarbothioato)(18-crown-6) 11

Strontium bis(benzenecarbothioato)(18-crown-6) **11a**. Similarly to **11b**, the reaction of potassium benzenecarbothioate (0.660 g, 3.74 mmol) in THF (8 mL) and SrI₂·5.5H₂O (0.879 g, 2.00 mmol) with 18-crown-6 (0.580 g, 2.19 mmol) in the same solvent (18 mL) at 22 °C for 1 h, followed by recrystallization from a mixed solvent of acetone (6.5 mL) and hexane (0.8 mL) at -20 °C for 1 day gave 0.222 g (18%) of the compound **11a** as pale yellow needles, m.p. 182–187 °C (decomp.) (Found: C, 49.84; H, 5.62; Calc. for C₂₆H₃₄O₈S₂Sr (626.29): C, 49.86; H, 5.47%): v_{max} (KBr)/cm⁻¹ 2923, 2867, 2834, 1560 (COS), 1508, 1500, 1487, 1465, 1438, 1352, 1300, 1252, 1205, 1162, 1099, 958, 843, 781, 696, 656 and 551; $\delta_{\rm H}$ (400 MHz; acetone- d_6 ; Me₄Si) 3.85 (24 H, s, OCH₂), 7.33 (4 H, t, *J* = 7.3 Hz, arom), 7.38 (2 H, t, *J* = 8.8 Hz, arom) and 8.34 (4 H, d, *J* = 6.8 Hz,

arom); $\delta_{\rm C}(100 \text{ MHz}; \text{ acetone-} d_6; \text{Me}_4\text{Si})$ 70.8 (OCH₂), 127.8, 129.1, 130.7, 144.8 (arom) and 213.8 (COS).

Strontium bis(4-methylbenzenecarbothioato)(18-crown-6) **11b**. A suspension of potassium 4-methylbenzenecarbothioate (0.783 g, 4.11 mmol) in THF (8 mL) was added to SrI₂·5.5H₂O (0.947 g, 2.15 mmol) in the same solvent (2 mL) and the mixture was stirred at 26 °C for 1 h. The white precipitates (KI) were filtered off. The filtrate was added to 18-crown-6 (0.685 g, 2.59 mmol) in THF solution (3 mL) and the mixture was stirred at 26 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (22 °C/0.1 Pa) gave yellow wet solid. Hexane (5 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave yellow micro crystalline solid (0.971 g). The solid was dissolved in acetone (14 mL). Hexane (4 mL) was slowly added, and the mixture was allowed to stand at -20 °C for 3 days. Filtration of the resulting crystals gave 0.650 g (50%) of the compound 11b as pale yellow needles, m.p. 191-196 °C (decomp.) (Found: C, 51.17; H, 6.01; Calc. for C₂₈H₃₈O₈S₂Sr (654.35): C, 51.39; H, 5.85%); v_{max} (KBr)/cm⁻¹ 2922, 1654 (COS), 1608, 1573, 1486, 1351, 1286, 1247, 1202, 1164, 1116, 953, 831, 796, 727, 652, 636, 532 and 472; $\delta_{\rm H}(400 \text{ MHz}; \text{ acetone-}d_6; \text{ Me}_4\text{Si})$ 2.34 (6 H, s, CH₃), 3.81 (24 H, s, OCH₂), 7.14 (4 H, d, J = 8.3 Hz, arom) and 8.24 (4 H, d, J = 7.8 Hz, arom); $\delta_{\rm C}(100$ MHz; acetone- d_6 ; Me₄Si) 21.3 (CH₃), 71.2 (OCH₂), 128.2, 129.3, 140.6, 142.4 (arom) and 213.6 (COS).

Strontium bis(4-methoxybenzenecarbothioato)(18-crown-6) **11c.** Yield: 21%; pale yellow micro crystals: m.p. 181–185 °C (decomp.) (Found: C, 48.88; H, 5.63; Calc. for $C_{28}H_{38}O_{10}S_2Sr$ (686.34): C, 49.00; H, 5.58%); v_{max} (KBr)/cm⁻¹ 2990, 2925, 2874, 2835, 1601 (COS), 1578, 1500, 1459, 1348, 1305, 1251, 1210, 1181, 1153, 1099, 1026, 957, 840, 740, 659, 627, 538, 503 and 453; $\delta_{H}(400 \text{ MHz}; \text{ acetone-}d_6; \text{ Me}_4\text{Si})$ 3.83 (6 H, s, OCH₃), 3.85 (24 H, s, OCH₂), 6.86 (4 H, d, J = 8.8 Hz, arom) and 8.32 (4 H, d, J = 8.8 Hz, arom). $\delta_{C}(100 \text{ MHz}; \text{ acetone-}d_6; \text{Me}_4\text{Si})$ 55.6 (OCH₃), 70.8 (OCH₂), 112.8, 131.0, 138.1, 162.5 (arom) and 212.7 (COS).

Strontium bis(4-chlorobenzenecarbothioato)(18-crown-6) **11d**. Yield: 40%; pale yellow micro crystals: m.p. 184–189 °C (decomp.) (Found: C, 44.62; H, 4.67; Calc. for $C_{26}H_{32}Cl_2O_8S_2Sr$ (695.18): C, 44.92; H, 4.64%); v_{max} (KBr)/cm⁻¹ 2917, 2874, 2832, 1585 (COS), 1575, 1510, 1466, 1352, 1288, 1278, 1252, 1201, 1160, 1101, 1012, 958, 841, 740, 730, 648 and 630; $\delta_{H}(400 \text{ MHz}; \text{ acetone-}d_6; \text{Me}_4\text{Si})$ 3.85 (24 H, s, OC H_2), 7.36 (4 H, d, J = 8.3 Hz, arom) and 8.33 (4 H, d, J = 8.8 Hz, arom); $\delta_{C}(100 \text{ MHz};$

acetone-*d*₆; Me₄Si) 70.9 (OCH₂), 127.8, 130.7, 136.5, 143.3 (arom) and 212.2 (COS).

Barium bis(arenecarbothioato)(18-crown-6) 12

Barium bis(benzenecarbothioato)(18-crown-6) **12a**. Similarly to **12b**, the reaction of potassium benzenecarbothioate (0.440 g, 2.50 mmol) and BaI₂ (0.494 g, 1.26 mmol) with 18-crown-6 (0.389 g, 1.47 mmol) in THF (13 mL) at 24 °C for 30 min, followed by recrystallization from a mixed solvent of acetone (80 mL) and hexane (14 mL) -20 °C for 4 days, gave 0.167 g (20%) of the compound **12a** as pale yellow needles, m.p. 174–179 °C (decomp.) (Found: C, 46.03; H, 5.16; Calc. for C₂₈H₃₄BaO₈S₂ (676.00): C, 46.19; H, 5.07%); v_{max} (KBr)/cm⁻¹ 2918, 1718 (COS), 1560, 1542, 1515, 1498, 1466, 1348, 1285, 1247, 1203, 1162, 1091, 950, 834, 779, 696 and 656; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.65 (24 H, s, OC*H*₂), 7.25 (2 H, d, *J* = 7.1 Hz, arom), 7.31 (4 H, t, *J* = 7.1 Hz, arom) and 8.07 (4 H, d, *J* = 6.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.7 (OCH₂), 127.0, 127.8, 129.4, 144.7 (arom) and 208.9 (COS).

Barium bis(4-methylbenzenecarbothioato)(18-crown-6) 12b. A suspension of potassium 4-methylbenzenecarbothioate (0.389 g, 2.04 mmol) in THF (8 mL) was added to BaI₂ (0.408 g, 1.04 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off. The filtrate was added to 18-crown-6 (0.338 g, 1.27 mmol) in THF solution (3 mL) and the mixture was stirred at 26 °C for 30 min. The resulting precipitates were filtered off by a glass filter, followed by washing with hexane (5 mL) and drying under reduce pressure (20 °C/0.1 Pa) for 1 h, to give pale yellow solid (0.622 g). The solid (0.598 g) was dissolved in acetone (87 mL). Hexane (7 mL) was slowly added, and the mixture was allowed to stand at -20 °C for 17 h. Filtration of the resulting crystals gave 0.267 g (37%) of the compound 12b as pale yellow needles, m.p. 188-194 °C (decomp.) (Found: C, 47.65; H, 5.55; Calc. for $C_{28}H_{38}BaO_8S_2$ (704.05): C, 47.77; H, 5.44%); v_{max} (KBr)/cm⁻¹ 2920, 2912, 2880, 2855, 1654 (COS), 1560, 1507, 1465, 1348, 1202, 1163, 1092, 959, 831, 727 and 527; $\delta_{\rm H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 2.27 (6 H, s, CH₃), 3.64 (24 H, s, OCH₂), 7.05 (4 H, d, J = 7.8 Hz, arom) and 7.97 (4 H, t, J = 7.8 Hz, arom); $\delta_{\rm C}(100$ MHz; DMSO-d₆; Me₄Si) 21.0 (CH₃), 69.9 (OCH₂), 127.6, 128.0, 138.9, 142.4 (arom) and 208.6 (COS).

Barium bis(2-*methoxybenzenecarbothioato*(18-crown-6) **12c**. Yield: 3%; colorless micro crystals: m.p. 198–203 °C (decomp.) (Found: C, 45.55; H, 5.24; Calc. for $C_{28}H_{38}BaO_{10}S_2$ (736.10): C, 45.69 H, 5.20%); v_{max} (KBr)/cm⁻¹ 2901, 1654 (COS), 1593,

1560, 1511, 1472, 1449, 1279, 1240, 1206, 1087, 1045, 1021, 960, 829, 770, 679 and 536; $\delta_{\text{H}}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.62 (24 H, s, OCH₂), 3.65 (6 H, s, OCH₃), 6.75 (2 H, t, *J* = 7.3 Hz, arom), 6.80 (2 H, d, *J* = 8.3 Hz, arom), 7.06 (4 H, t, *J* = 7.3 Hz, arom) and 7.24 (2 H, t, *J* = 6.8 Hz, arom); $\delta_{\text{C}}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 5.56 (OCH₃), 69.9 (OCH₂), 111.8, 119.6, 127.3, 127.9, 140.5, 153.6 (arom) and 210.7 (COS).

Barium bis(4-*methoxybenzenecarbothioato*)(*18-crown-6*) **12d**. Yield: 58%; pale yellow micro crystals: m.p. 161–166°C (decomp.) (Found: C, 45.60; H, 5.27; Calc. for C₂₈H₃₈BaO₁₀S₂ (736.10): C, 45.69 H, 5.20%); v_{max} (KBr)/cm⁻¹ 2934, 2919, 2887, 2833,1604 (COS), 1582, 1560, 1542, 1505, 1465, 1258, 1210, 1156, 1093, 1031, 961, 943, 856, 834, 811, 742, 657, 626 and 536; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.64 (24 H, s, OC*H*₂), 3.74 (6 H, s, OC*H*₃), 6.79 (4 H, d, *J* = 8.8 Hz, arom) and 8.06 (4 H, d, *J* = 8.8 Hz, arom). δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 55.4 (OCH₃), 69.9 (OCH₂), 112.0, 129.6, 137.8, 160.7 (arom) and 208.0 (COS).

Barium bis(4-chlorobenzenecarbothioato)(18-crown-6) **12e**. Yield: 24%; pale yellow micro crystals: m.p. 157–161 °C (decomp.) (Found: C, 41.88; H, 4.41; Calc. for C₂₆H₃₂BaCl₂O₈S₂ (744.89); C, 41.92; H, 4.33%); v_{max} (KBr)/cm⁻¹ 2908, 2871, 1587 (COS), 1573, 1505, 1478, 1464, 1389, 1346, 1282, 1247, 1197, 1157, 1091, 1014, 961, 851, 832, 729, 648, 630, 588, 500 and 473; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.63 (24 H, s, OC*H*₂), 7.30 (4 H, d, *J* = 8.3 Hz, arom) and 8.07 (4 H, d, *J* = 8.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.9 (OCH₂), 127.0, 129.7, 134.3, 143.7 (arom) and 206.8 (COS).

Calcium bis(arenecarboselenoato)(15-crown-5)(H₂O) **13**

Calcium bis(benzenecarboselenoato)(*15-crown-5)*(*H*₂*O*) **13a**. Similarly to **13b**, the reaction of potassium benzenecarboselenoate (0.570 g, 2.60 mmol) and CaI₂ (0.4.01 g, 1.36 mmol) with 15-crown-5 (0.304 g, 1.38 mmol) in THF (16 mL) at 21 °C for 2 h, followed by washing with hexane (10 mL), gave 0.389 g (48%) of the compound **13a** as yellow micro crystals, m.p. 142–148 °C (decomp.) (Found: C, 44.37; H, 5.31; Calc. for C₂₂H₃₂CaO₈Se₂ (648.52): C, 44.45; H, 5.28%); v_{max} (KBr)/cm⁻¹ 2925, 1621 (COSe), 1517, 1477, 1456, 1355, 1297, 1249, 1200, 1119, 1087, 950, 906, 872, 628, 775, 695, 634 and 457; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.57 (24 H, s, OC*H*₂), 3.77 (2 H, b, *H*₂O), 7.19 (4 H, t, *J* = 7.1 Hz, arom), 7.35 (6 H, t, *J* = 7.1 Hz, arom) and 7.98 (4 H, t, *J* = 7.1

Hz, arom); $\delta_{\rm C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si}) 69.6 \text{ (OCH}_2\text{)}, 126.5, 127.9, 129.4, 147.3 (arom) and 210.9 (COSe); <math>\delta_{\rm Se}(76.2 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_2\text{Se}) 442.5$.

Calcium bis(4-methylbenzenecarboselenoato)(15-crown-5)(H_2O) 13b. A suspension of potassium 4-methylbenzenecarboselenoate (0.655 g, 2.76 mmol) in THF (8 mL) was added to CaI₂ (0.4.29 g, 1.45 mmol) in the same solvent (2 mL) and the mixture was stirred at 23 °C for 1 h. The white precipitates (KI) were filtered off by the use of glass filter. The filtrate was added to 15-crown-5 (0.315 g, 1.43 mmol) in THF solution (6 mL), and the mixture was stirred at 23 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (22 °C/0.3 Pa) gave yellow wet solid. Hexane (6 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.604 g (63%) of the compound 13b as yellow micro crystals, m.p. 132-138 °C (decomp.) (Found: C, 44.00; H, 5.64; Calc. for C₂₄H₃₆CaO₈Se₂ (710.04): C, 44.07; H, 5.41%); v_{max} (KBr)/cm⁻¹ 2919, 1605 (COSe), 1577, 1463, 1351, 1287, 1249, 1200, 1159, 1098, 971, 909, 842, 824, 791, 719, 629 and 465; $\delta_{\rm H}(400 \text{ MHz};$ acetone-d₆; Me₄Si) 2.26 (6 H, s, CH₃), 3.55 (24 H, s, OCH₂), 3.78 (2 H, b, H₂O), 7.03 (4 H, d, J = 7.8 Hz, arom) and 7.96 (4 H, d, J = 7.8 Hz, arom); $\delta_{\rm C}(100$ MHz; DMSO- d_6 ; Me₄Si) 17.8 (CH₃), 69.2 (OCH₂), 127.2, 128.1, 138.6, 145.0 (arom) and 208.3 (COSe); $\delta_{\text{Se}}(76.2 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_2\text{Se})-459.2.$

Calcium bis(4-methoxybenzenecarboselenoato)(15-crown-5)(H₂O) **13c**. Yield: 52%; yellow micro crystals: m.p. 138–142 °C (decomp.) (Found: C, 42.55; H, 5.51; Calc. for C₂₄H₃₆CaO₁₀Se₂ (682.53): C, 42.23; H, 5.32%); v_{max} (KBr)/cm⁻¹ 2932, 2881, 1600 (COSe), 1578, 1501, 1461, 1306, 1254, 1206, 1157, 1087, 1027, 908, 840, 791, 622, 526 and 460; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.68 (24 H, s, OCH₂), 3.75 (6 H, s, OCH₃), 3.87 (2 H, b, H₂O), 6.78 (4 H, d, *J* = 7.3 Hz, arom) and 8.05 (4 H, d, *J* = 7.3 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 55.1 (OCH₃), 68.1 (OCH₂), 111.6, 129.9, 140.2, 160.6 (arom) and 209.7 (COSe); δ_{Se} (76.2 MHz; DMSO-*d*₆; Me₂Se) 438.1.

Calcium bis(4-chlorobenzenecarboselenoato)(15-crown-5)(H_2O) **13d**. Yield: 9%; yellow micro crystals: m.p. 143–148 °C (decomp.) (Found: C, 40.02; H, 4.57; Calc. for C₂₄H₃₂CaCl₂O₈Se₂ (717.94): C, 40.18; H, 4.50%); v_{max} (KBr)/cm⁻¹ 2928, 2881, 1617 (COSe), 1574, 1516, 1478, 1400, 1355, 1291, 1249, 1194, 1158, 1086, 949, 907, 839, 803, 730, 629, 571, 468 and 435; δ_{H} (400 MHz; DMSO- d_6 ; Me₄Si) 3.58 (24 H, s, OC H_2), 3.83 (2 H, b, H_2O), 7.28 (4 H, d, J = 8.8 Hz, arom) and 8.00 (4 H, d, J = 8.3 Hz, arom); δ_{C} (100 MHz; DMSO- d_6 ; Me₄Si) 69.5 (OCH₂), 126.3, 130.0, 134.9, 146.2 (arom)

and 208.9 (COSe); δ_{se} (76.2 MHz; DMSO- d_6 ; Me₂Se) 465.7.

Strontium bis(arenecarboselenoato)(18-crown-6) 14

Strontium bis(benzenecarboselenoato)(18-crown-6) **14a**. Similarly to **14b**, the reaction of potassium benzenecarboselenoate (0.491 g, 2.24 mmol) and SrI₂·5.5H₂O (0.627 g, 1.20 mmol) in THF (8 mL) with 18-crown-6 (0.314 g, 1.19 mmol) at 24 °C for 1 h, followed by recrystallization from a mixed solvent of acetonitrile (5 mL) and hexane (1.8 mL) at -20 °C for 5 days, gave 0.118 g (15%) of the compound **14a** as pale needles, m.p. 142–147 °C (decomp.) (Found: C, 43.03; H, 5.06; Calc. for C₂₆H₃₄O₈Se₂Sr (721.96): C, 43.37; H, 4.76%); v_{max} (KBr)/cm⁻¹ 2921, 2823, 1616 (COSe), 1580, 1515, 1464, 1352, 1252, 1191, 1150, 1098, 969, 913, 841, 771, 692, 683 and 492; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.64 (24 H, s, OC*H*₂), 7.36 (6 H, t, *J* = 7.3 Hz, arom) and 8.08 (4 H, d, *J* = 7.3 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.6 (OCH₂), 126.7, 128.9, 129.4, 146.9 (arom) and 211.2 (COSe); δ_{Se} (76.2 MHz; DMSO-*d*₆; Me₂Se) 452.1.

Strontium bis(4-methylbenzenecarboselenoato)(18-crown-6) 14b. A suspension of potassium 4-methylbenzenecarboselenoate (0.650 g, 2.74 mmol) in THF (8 mL) was added to SrI₂·5.5H₂O (0.640 g, 1.45 mmol) in the same solvent (2 mL) and the mixture was stirred at 26 °C for 1 h. The white precipitates (KI) were filtered off by the use of glass filter. The filtrate was added to 18-crown-6 (0.370 g, 1.40 mmol) in THF solution (6 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (23 °C/0.2 Pa) gave yellow wet solid. Hexane (6 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave brown micro crystals (0.545 g). The solid (0.200 g) was dissolved in acetonitrile (15 mL). Hexane (8 mL) and diethyl ether (5 mL) were slowly added, and the mixture was allowed to stand at -20 °C for 1 day. Filtration of the resulting crystals gave 0.187 g (17%) of the compound 14b as pale yellow needles, m.p. 131–138 °C (decomp.) (Found: C, 44.83; H, 5.16; Calc. for C₂₈H₃₈O₈Se₂Sr (750.00): C, 44.95; H, 5.12%); v_{max} (KBr)/cm⁻¹ 2919, 1605 (COSe), 1515, 1463, 1351, 1287, 1249, 1159, 1098, 971, 909, 842, 824, 790, 719, 629 and 466; $\delta_{\rm H}(400 \text{ MHz}; \text{ acetone-}d_6;$ Me₄Si) 2.27 (6 H, s, CH₃), 3.62 (24 H, s, OCH₂), 7.05 (4 H, d, J = 7.8 Hz, arom) and 7.97 (4 H, d, J = 7.8 Hz, arom); $\delta_{C}(100$ MHz; DMSO- d_{6} ; Me₄Si) 20.9 (CH₃), 69.6 (OCH₂), 127.3, 128.1, 139.3, 144.5 (arom) and 210.5 (COSe); δ_{Se} (76.2 MHz; DMSO*d*₆; Me₂Se) 446.8.

Strontium bis(4-methoxybenzenecarboselenoato)(18-crown-6) 14c. Yield: 22%; yellow

micro crystals: m.p. 136–141 °C (decomp.) (Found: C, 43.03; H, 4.33; Calc. for $C_{28}H_{38}O_{10}Se_2Sr$ (780.14): C, 43.11; H, 4.1%); v_{max} (KBr)/cm⁻¹ 2919, 2834, 1602 (COSe), 1581, 1503, 1466, 1353, 1288, 1258, 1208, 1159, 1098, 1026, 971, 908, 843, 652, 620, 508, 489 and 475; $\delta_{H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.65 (24 H, s, OCH₂), 3.78 (6 H, s, OCH₃), 6.79 (4 H, d, J = 8.8 Hz, arom) and 8.08 (4 H, d, J = 8.8 Hz, arom); $\delta_{C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 55.0 (OCH₃), 69.6 (OCH₂), 111.7, 129.9, 139.6, 160.9 (arom) and 210.0 (COSe); $\delta_{Se}(76.2 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_2\text{Se})$ 421.5.

Strontium bis(4-chlorobenzenecarboselenoato)(18-crown-6) **14d**. Yield: 16%; yellow micro crystals: m.p. 156–162 °C (decomp.) (Found: C, 37.63; H, 4.56; Calc. for C₂₄H₃₄Cl₂O₈Se₂Sr: C, 37.58; H, 4.47%); v_{max} (KBr)/cm⁻¹ 2922, 1618 (COSe), 1586, 1575, 1500, 1467, 1396, 1352, 1285, 1196, 1157, 1097, 1012, 970, 910, 842, 730, 719, 625, 563 and 470; $\delta_{\text{H}}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.66 (24 H, s, OCH₂), 7.30 (4 H, d, J = 8.3 Hz, arom) and 8.11 (4 H, d, J = 8.3 Hz, arom); $\delta_{\text{C}}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 69.5 (OCH₂), 126.6, 129.5, 134.6, 145.6 (arom) and 209.3 (COSe); $\delta_{\text{Se}}(76.2 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_2\text{Se})$ 463.6.

Barium bis(arenecarboselenoato)(18-crown-6) 15

Barium bis(benzenecarboselenoato)(18-crown-6) **15a**. Similarly to **15b**, the reaction of potassium benzenecarboselenoate (0.300 g, 1.37 mmol) and BaI₂ (0.290 g, 0.74 mmol) with 18-crown-6 (0.197 g, 0.75 mmol) in THF (12 mL) at 26 °C for 1 h, followed by recrystallization from a mixed solvent of acetone (11 mL) and hexane (1.0 mL) at -20 °C for 4 days, gave 0.148 g (26%) of the compound **15a** as pale yellow needles, m.p. 150–155 °C (decomp.) (Found: C, 40.73; H, 4.46; Calc. for C₂₆H₃₄BaO₈Se₂ (769.79): C, 40.57; H, 4.45%); v_{max} (KBr)/cm⁻¹ 2917, 2879, 2826, 1774, 1655 (COSe), 1590, 1528, 1466, 1349, 1285, 1249, 1201, 1159, 1091, 960, 908, 833, 733, 693, 680 and 633; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.57 (24 H, s, OC*H*₂), 7.23 (6 H, d, *J* = 7.1 Hz, arom), 7.31 (6 H, d, *J* = 7.1 Hz, arom) and 8.02 (4 H, d, *J* = 7.3 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 69.7 (OCH₂), 126.9, 128.0, 129.6, 147.4 (arom) and 210.7 (COSe); $\delta_{\rm Se}$ (76.2 MHz; DMSO-*d*₆; Me₂Se) 443.2.

Barium bis(4-methylbenzenecarboselenoato)(18-crown-6) **15b**. A suspension of potassium 4-methylbenzenecarboselenoate (0.325 g, 1.37 mmol) in THF (8 mL) was added to BaI₂ (0.282 g, 0.72 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates were filtered off by the use of glass filter. The filtrate was added to 18-crown-6 (0.198 g, 0.75 mmol) in THF solution (4 mL) and

16

the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (22 °C/0.4 Pa) gave yellow wet solid. Hexane (6 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave yellow micro crystals solid (0.367 g). The solid was dissolved in acetone (10 mL). Hexane (1.0 mL) was slowly added and the mixture was allowed to stand at -20 °C for 5 days. Filtration of the resulting crystals gave 0.033 g (6%) of the compound **15b** as pale yellow needles, m.p. 137–145 °C (decomp.) (Found: C, 42.37; H, 4.95; Calc. for C₂₈H₃₈BaO₈Se₂ (798.84): C, 42.15; H, 4.80%); v_{max} (KBr)/cm⁻¹ 2828, 2746, 1718 (COSe), 1605 (COSe), 1523, 1508, 1472, 1429, 1351, 1288, 1249, 1199, 1162, 1092, 1020, 964, 904, 832, 804, 790, 720, 631 and 620; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 2.33 (6 H, s, C*H*₃), 3.70 (24 H, s, OC*H*₂), 7.12 (4 H, d, *J* = 7.8 Hz, arom) and 8.03 (4 H, d, *J* = 7.8 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 21.0 (*C*H₃), 69.9 (OCH₂), 127.6, 128.0, 138.9, 142.4 (arom) and 208.6 (COSe); $\delta_{\rm Se}$ (76.2 MHz; DMSO-*d*₆; Me₂Se) 447.6.

Barium bis(4-methoxybenzenecarboselenoato)(18-crown-6) **15c**. Yield: 7%; yellow micro crystals: m.p. 145–149 °C (decomp.) (Found: C, 40.54; H, 4.68; Calc. for $C_{30}H_{38}BaO_{10}Se_2$ (831.98): C, 40.53; H, 4.62); v_{max} (KBr)/cm⁻¹ 2917, 2886, 2871, 2832, 1718 COSe), 1654 (COSe), 1603, 1582, 1528, 1522, 1503, 1466, 1350, 1259, 1207, 1160, 1092, 1030, 961, 904, 852, 834, 810, 650, 620, 507, 457; δ_{H} (400 MHz; DMSO- d_6 ; Me₄Si) 3.68 (24 H, s, OCH₂), 3.75 (6 H, s, OCH₃), 6.78 (4 H, d, J = 7.3 Hz, arom), 8.05 (4 H, d, J = 7.36 Hz, arom); δ_{C} (100 MHz; DMSO- d_6 ; Me₄Si) 55.3 (OCH₃), 69.8 (OCH₂), 112.0, 123.0, 140.3, 161.0 (arom), 209.6 (COSe); δ_{Se} (76.2 MHz; DMSO- d_6 ; Me₂Se) 430.7.

Barium bis(4-chlorobenzenecarboselenoato)(18-crown-6) **15d**. Yield: 11%; brown micro crystals: m.p. 138–143 °C (decomp.), (Found: C, 37.57; H, 3.97; Calc. for C₂₆H₃₂BaCl₂O₈Se₂ (838.68): C, 37.23; H, 3.85%); ν_{max} (KBr)/cm⁻¹ 2909, 2880, 2825, 1719 (COSe), 1618, 1577, 1522, 1479, 1466, 1395, 1286, 1248, 1194, 1157, 1090, 1014, 961, 906, 831, 729, 624, 560, 468; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.61 (24 H, s, OC*H*₂), 7.29 (4 H, d, *J* = 8.8 Hz, arom), 8.05 (4 H, d, *J* = 8.3 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.8 (OCH₂), 126.8, 129.8, 134.6, 146.1 (arom), 208.8 (*C*=O); δ_{Se} (76.2 MHz; DMSO-*d*₆; Me₂Se) 468.2.

Calcium bis(arenecarbodithioato)(15-crown-5)(THF)

Calcium bis(benzenecarbodithioato)(15-crown-5)(THF) **16a**. A suspension of potassium benzenecarbodithioate (0.515 g, 2.68 mmol) in THF (8 mL) was added to CaI₂ (0.393 g, 1.34 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off. The filtrate was added to 15crown-5 (0.293 g, 1.33 mmol) in THF solution (6 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave red wet solid. Hexane (5 mL) and THF (3 mL) were added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.436 g (51%) of the compound 16a as violet brown micro crystals, m.p. 187–195 °C (decomp.) (Found: C, 52.83; H, 5.79; Calc. for C₂₈H₃₈CaO₆S₄ (638.12): C, 52.63; H, 5.99%); v_{max} (KBr)/cm⁻¹ 2924, 2881, 2345, 1645, 1475, 1442, 1356, 1296, 1248 (CSS), 1194, 1163, 1113, 1084, 1045, 991, 953, 901, 872, 827, 769, 688, 654, 590 and 555; δ_H(400 MHz; DMSO-d₆; Me₄Si) 1.84 (4 H, t, CH₂), 3.61 (20 H, s, OCH₂), 3.84 (4 H, t, CH₂), 7.14 (4 H, t, J = 7.3 Hz, arom), 7.26 (4 H, t, J = 7.3 Hz, arom) and 8.13 (2 H, d, J = 6.8 Hz, arom); $\delta_{\rm C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si}) 25.5 \text{ (THF-OCH}_2), 68.8 \text{ (THF-CH}_2),$ 69.3 (OCH₂), 126.0, 126.2, 128.8, 152.9 (arom) and 250.4 (C=S).

Calcium bis(4-methylbenzenecarbodithioato)(15-crown-5)(THF) 16b. A suspension of potassium 4-methylbenzenecarbodithioate (0.590 g, 2.86 mmol) in THF (8 mL) was added to CaI₂ (0.420 g, 1.43 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off. The filtrate was added to 15-crown-5 (0.326 g, 1.48 mmol) in THF solution (6 mL) and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) and recrystallization of the resulting wet solid from a mixed solvent of dichloromethane and hexane in refrigerator (-17 °C) gave 0.600 g (63%) of the compound 16b as deep brown micro crystals, m.p. 197-205 °C (decomp.) (Found: C, 54.23; H, 6.48; Calc. for $C_{30}H_{42}CaO_6S_4$ (666.99): C, 54.02; H, 6.35%); v_{max} (KBr)/cm⁻¹ 2935, 2881, 1638, 1599, 1474, 1458, 1451, 1355, 1299, 1249 (CSS), 1198, 1160, 1114, 1082, 1047, 1013, 981, 952, 904, 872, 824, 786, 714, 639 and 590; $\delta_{\rm H}(400$ MHz; DMSO-d₆; Me₄Si) 1.85 (4 H, t, CH₂), 2.25 (6 H, s, CH₃), 3.54 (20 H, s, OCH₂), 3.83 (4 H, t, CH₂), 6.95 (4 H, d, J = 7.8 Hz, arom) and 8.13 (4 H, d, J = 7.8 Hz, arom); δ_C(100 MHz; DMSO-d₆; Me₄Si) 20.7 (CH₃), 25.6 (THF-CH₂), 68.6 (THF-OCH₂), 69.9 (OCH₂), 126.5, 126.6, 137.4, 150.0 (arom) and 249.6 (CSS).

Calcium bis(4-methoxybenzenecarbodithioato)(15-crown-5)(THF) **16c**. A suspension of potassium 4-methoxybenzenecarbodithioate (0.165 g, 0.74 mmol) in THF (8 mL)

was added to CaI₂ (0.109 g, 0.37 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off. The filtrate was added to 15-crown-5 (0.097 g, 0.44 mmol) in THF solution (6 mL) and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave crude calcium bis(4-methoxybenzenecarbodithioato)(15-crown-5)(THF) **16c** as brown wet solid. Hexane (5 mL) and acetone (5 mL) were added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.119 g (46%) of the compound **16c** as brown micro crystals, m.p. 176–182 °C (decomp.) (Found: C, 51.83; H, 6.14; Calc. for C₃₀H₄₂CaO₈S₄ (698.99): C, 51.55; H, 6.06%); v_{max} (KBr)/cm⁻¹ 2922, 2878, 1654, 1595, 1498, 1458, 1350, 1300, 1254, 1216 (CSS), 1180, 1164, 1098, 1030, 1003, 968, 909, 840, 636, 636 and 598; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 1.82 (4 H, t, C*H*₂), 3.56 (20 H, s, OC*H*₂), 3.75 (6 H, s, OC*H*₃), 3.84 (4 H, t, C*H*₂), 6.70 (4 H, d, *J* = 8.8 Hz, arom) and 8.33 (4 H, d, *J* = 8.8 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 25.6 (THF-*C*H₂), 55.1 (OCH₃), 68.4 (OCH₂), 68.7 (THF-OCH₂), 111.0, 128.2, 145.0, 160.1 (arom) and 247.9 (CSS).

Calcium bis(4-chlorobenzenecarbodithioato)(15-crown-5)(THF) 16d. A suspension of potassium 4-chlorobenzenecarbodithioate (0.518 g, 2.28 mmol) in THF (8 mL) was added to CaI₂ (0.343 g, 1.17 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by the use of a glass filter. The filtrate was added to 15-crown-5 (0.263 g, 1.19 mmol) in THF solution (6 mL) and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave red wet solid. Hexane (5 mL) and dichloromethane (2 mL) were added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.471 g (57%) of the compound 16d as red brown micro crystals: m.p. 142-148 °C (decomp.) (Found: C, 47.87; H, 5.09; Calc. for C₂₈H₃₆CaCl₂O₆S₄ (706.04): C, 47.51; H, 5.13%); v_{max} (KBr)/cm⁻¹ 2934, 2881, 1654, 1637, 1618, 1560, 1542, 1508, 1475, 1458, 1390, 1354, 1290, 1248 (CSS), 1086, 1011, 951, 907, 872, 836, 517; $\delta_{\rm H}$ (400 MHz; DMSO- d_6 ; Me₄Si) 1.85 (4 H, t, CH₂), 3.55 (20 H, s, OCH₂), 3.82 (4 H, t, CH₂), 7.19 (4 H, d, J = 8.8 Hz, arom), 8.20 (4 H, t, J = 8.8 Hz, arom); δ_C(100 MHz; DMSO-d₆; Me₄Si) 69.8 (OCH₂), 125.9, 127.9, 133.0, 150.1 (arom), 247.6 (CSS).

Strontium bis(arenecarbodithioato)(18-crown-6) 17

Strontium bis(benzenecarbodithioato)(18-crown-6) **17a**. A suspension of potassium benzenecarbodithioate (0.615 g, 3.20 mmol) in THF (8 mL) was added to $SrI_2 \cdot 5.5H_2O$

(0.704 g, 1.60 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.430 g, 1.63 mmol) in THF solution (6 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) and recrystallization of the resulting residue from a mixed solvent of dichloromethane, ether and hexane (2:5:1) in refrigerator (-17 °C) gave 0.684 g (65%) of the compound **17a** as red micro crystals, m.p. 167–172 °C (decomp.) (Found: C, 47.54; H, 5.21; Calc. for C₂₆H₃₆O₆S₄Sr (658.03): C, 47.43; H, 5.20%); v_{max} (KBr)/cm⁻¹ 2920, 2829, 1614, 1589, 1541, 1508, 1469, 1442, 1352, 1298, 1284, 1250, 1205 (CSS), 1171, 1097, 1016, 966, 912, 839, 762, 690, 658, 590 and 542; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.58 (24 H, s, OC*H*₂), 7.14 (4 H, t, *J* = 7.3 Hz, arom), 7.22 (4 H, t, *J* = 7.3 Hz, arom) and 8.13 (2 H, d, *J* = 6.8 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 69.6 (OCH₂), 126.1, 126.2, 128.9, 152.9 (arom) and 250.3 (CSS).

Strontium bis(4-methylbenzenecarbodithioato)(18-crown-6) **17b**. Similarly to compound **17a**, a reaction of potassium 4-methylbenzenecarbodithioate (0.441 g, 2.14 mmol) in THF (8 mL) with SrI₂·5.5H₂O (0.471 g, 1.07 mmol), followed by treating with 18-crown-6 (0.276 g, 1.04 mmol) in THF solution (7 mL) give 0.397 g (54%) of the compound **17b** as brown micro crystals, m.p. 186–193 °C (decomp.) (Found: C, 48.85; H, 5.55; Calc. for C₂₈H₃₈O₆S₄Sr (686.48): C, 48.99; H, 5.58%); ν_{max} (KBr)/cm⁻¹ 2914, 2873, 1601, 1468, 1404, 1352, 1300, 1284, 1250, 1207 (CSS), 1169, 1097, 1018, 970, 914, 841, 822, 787, 640, 592 and 478; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 2.26 (6 H, s, *CH*₃), 3.59 (24 H, s, OC*H*₂), 6.95 (4 H, d, *J* = 7.8 Hz, arom) and 8.13 (4 H, d, *J* = 7.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 20.7 (*C*H₃), 69.6 (O*C*H₂), 126.4, 126.6, 137.5, 149.9 (arom) and 249.6 (*C*SS).

Strontium bis(4-methoxybenzenearbdithioato)(18-crown-6) **17c**. A suspension of potassium 4-methoxybenzenecarbdithioate (0.372 g, 1.67mmol) in THF (8 mL) was added **7** to SrI₂·5.5H₂O (0.387 g, 0.88 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.246 g, 0.93 mmol) in THF solution (4 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa), followed by washing with hexane, gave 0.297 g (47%) of the compound **17c** as brown red micro crystals: m.p. 147–153 °C (decomp.) (Found: C, 49.80; H, 6.02; Calc. for C₂₈H₃₈O₈S₄Sr (718.05): C, 46.81; H, 5.33); v_{max} (KBr)/cm⁻¹ 2917, 2872, 2837, 1597, 1572, 1498,

1472, 1350, 1310, 1258, 1210 (CSS), 1161, 1089, 1050, 1002, 961, 912, 836, 807, 635, 599, 499; $\delta_{\rm H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.58 (24 H, s, OCH₂), 3.75 (6 H, s, OCH₃), 6.70 (4 H, d, *J* = 8.8 Hz, arom), 8.34 (4 H, d, *J* = 8.8 Hz, arom); $\delta_{\rm C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 55.1 (OCH₃), 69.6 (OCH₂), 111.0, 128.2, 145.0, 160.2 (arom), 247.6 (CSS).

Strontium bis(4-chlorobenzenecarbodithioato)(18-crown-6) **17d**. A suspension of potassium 4-chlorobenzenecarbodithioate (0.497 g, 2.20 mmol) in THF (8 mL) was added to SrI₂·5.5H₂O (0.504 g, 1.14 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.301g, 1.14 mmol) in THF solution (7 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) gave brown wet solid. Hexane (10 mL) was added to the wet solid and the mixture was stirred at 25 °C for 10 min. Filtration of the insoluble parts gave 0.364 g (44%) of the compound **17d** as brown micro crystalline solid: m.p. 147–153 °C (decomp.) (Found: C, 42.76; H, 4.47; Calc. for C₂₆H₃₂Cl₂O₆S₄Sr (725.95): C, 42.94; H, 4.4%); v_{max} (KBr)/cm⁻¹ 2917, 2877, 1615, 1584, 1473, 1393, 1351, 1285, 1251, 1203 (CSS), 1163, 1096, 1015, 969, 915, 831, 631, 586, 519; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.60 (24 H, s, OC*H*₂), 7.19 (4 H, d, *J* = 8.3 Hz, arom); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 69.6 (OCH₂), 125.9, 127.9, 133.1, 150.9 (arom), 247.6 (CSS).

Barium bis(arenecarbodithioato)(18-crown-6) 18

Barium bis(benzenecarbodithioato)(18-crown-6) **18a**. A suspension of potassium benzenecarbodithioate (0.523 g, 2.72 mmol) in THF (8 mL) was added to BaI₂ (0.99 g, 1.36 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The resulting precipitates were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.362 g, 1.33 mmol) in THF solution (6 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa) and recrystallization from a mixed solvent of acetone, ether and hexane (5 mL) gave 0.685 g (71%) of the compound **18a** as red brown micro crystals, m.p. 197–205 °C (decomp.) (Found: C, 43.88; H, 5.26; Calc. for C₂₆H₃₆BaO₆S₄ (710.15): C, 43.97; H, 5.11%); ν_{max} (KBr)/cm⁻¹ 2918, 2873, 2853, 2820, 1654, 1560, 1467, 1442, 1428, 1348, 1283, 1246, 1216 (CSS), 1090, 1014, 957, 913, 827, 758, 689, 658, 618, 592 and 473; $\delta_{H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 3.61 (24 H, s, OCH₂), 7.14 (2 H, t, *J* = 7.3 Hz, arom), 7.23 (4 H, t, *J* = 7.3 Hz, arom) and 8.14 (4 H, d, *J* = 7.3 Hz,

arom); δ_C(100 MHz; DMSO-*d*₆; Me₄Si) 69.6 (OCH₂), 126.1, 126.2, 127.9, 152.8 (arom) and 250.2 (*C*SS).

Barium bis(4-*methylbenzenecarbodithioato*)(*18-crown-6*) **18b**. Similarly to **18a**, a reaction of potassium 4-methylbenzenecarbodithioate (0.594 g, 2.88 mmol) with BaI₂ (0.565 g, 1.44 mmol) in THF (10 mL), followed by treating with a THF solution containing 18-crown-6 (0.377 g, 1.43 mmol) gave 0.827 g (78%) yield of the compound **18b** as brown micro crystals, m.p. 175–183 °C (decomp.) (Found: C, 45.54; H, 5.26; Calc. for C₂₈H₃₈BaO₆S₄ (736.06): C, 45.68; H, 5.20%); ν_{max} (KBr)/cm⁻¹ 2918, 2878, 2824, 2742,1654, 1560, 1541, 1508, 1466, 1349, 1250 (CSS), 1090, 1020, 959, 912, 825, 640 and 590; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 2.25 (6 H, s, *CH*₃), 3.61 (24 H, s, OC*H*₂), 6.95 (4 H, d, *J* = 7.8 Hz, arom) and 8.13 (4 H, d, *J* = 7.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 20.7 (*C*H₃), 69.6 (O*C*H₂), 126.5, 126.6, 137.5, 149.9 (arom) and 249.4 (*C*SS).

Barium bis(4-methoxybenzenecarbodithioato)(18-crown-6) **18c**. A suspension of potassium 4-methoxybenzenecarbodithioate (0.457 g, 2.05 mmol) in THF (8 mL) was added to BaI₂ (0.400 g, 1.02 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by the use of a glass filter. The filtrate was added to 18-crown-6 (0.272 g, 1.03 mmol) in THF solution (4 mL), and the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa), followed by washing with hexane/ether (4:1) gave 0.269 g (34%) of the compound **18c** as red brown micro crystals: m.p. 139–144 °C (decomp.) (Found: C, 43.66; H, 5.06; Calc. for C₂₈H₃₈BaO₈S₄ (768.05): C, 43.78; H, 4.99%); v_{max} (KBr)/cm⁻¹ 2917, 2871,2837, 1654, 1597, 1572, 1498, 1472, 1440, 1412, 1350, 1310, 1258, 1210 (CSS), 1161, 1089, 1025, 1002, 961, 912, 836, 807, 635, 599, 499; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.61 (24 H, s, OC*H*₂), (6 H, s, OC*H*₃), 6.70 (4 H, d, *J* = 8.8 Hz, arom), 8.34 (4 H, d, *J* = 8.8 Hz, arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 55.1 (OCH₃), 69.6 (OCH₂), 111.0, 128.2, 145.0, 160.2 (arom), 247.6 (CSS).

Barium bis(4-chlorobenzenecarbodithioato)(18-crown-6) **18d**. A suspension of potassium 4-chlorobenzenecarbodithioate (0.734 g, 3.28 mmol) in THF (8 mL) was added to BaI₂ (0.682 g, 1.74 mmol) in the same solvent (2 mL) and the mixture was stirred at 25 °C for 1 h. The white precipitates (KI) were filtered off by a glass filter. The filtrate was added to 18-crown-6 (0.467 g, 1.77 mmol) in THF solution (7 mL), and

the mixture was stirred at 25 °C for 30 min. Removal of the solvent from the mixture under reduced pressure (25 °C/0.4 Pa), followed by washing with ether, gave 0.568g (42%) of the compound **18d** as red brown micro crystals: m.p. 153–157 °C (decomp.), (Found: C, 40.01; H, 4.48; Calc. for C₂₆H₃₄BaCl₂O₆S₄ (777.97): C, 40.09; H, 4.40%); v_{max} (KBr)/cm⁻¹ 2914, 2870, 2820, 1712, 1654, 1585, 1560, 1508, 1467, 1394, 1350, 1283, 1248, 1210 (CSS), 1164, 1089 1015, 958, 914, 830, 631, 586, 518, 479; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 3.60 (24 H, s, OC*H*₂), 7.18 (4 H, d, *J* = 7.8 Hz, arom), 8.19 (4 H, t, *J* = 7.8 Hz, 9 arom); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 69.6 (OCH₂), 125.9, 127.9, 133.1, 151.0 (arom), 247.5 (CSS).

Calcium (alkanecarbothioato)(iodo)(15-crown-5) 19

Calcium (thioacetato)(iodo)(15-crown-5) **19a**. Similarly to **19c**, the reaction of potassium thioacetato (0.184 g, 1.61 mmol) and CaI₂ (0.488 g, 1.66 mmol) with 15-crown-5 (0.371 g, 1.68 mmol) in THF (13 mL) at 23 °C for 1 h, followed by recrystallization from a mixed solvent of acetone (6 mL) and hexane (0.6 mL) at -20 °C for 30 h, gave 0.192 g (45%) of the compound **19a** as colorless needles, m.p. 202–207 °C (decomp.) (Found: C, 31.27; H, 5.15; Calc. for C₁₂H₂₃CaIO₆S (462.00): C, 31.17; H, 5.01%); v_{max} (KBr)/cm⁻¹ 2940, 2885, 1686 (COS), 1654 (COS), 1637, 1560, 1542, 1534, 1508, 1499, 1475, 1458, 1354, 1297, 1120, 1087, 954, 874, 829, 690 and 588; $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 2.19 (3 H, s, *CH*₃) and 3.51 (20 H, s, OC*H*₂); $\delta_{\rm C}$ (100 MHz; DMSO-*d*₆; Me₄Si) 39.3 (*C*H₃), 70.1 (OCH₂) and 216.2 (*C*SO).

Calcium (2,2-*dimethylpropanethioato*)(*iodo*)(15-crown-5) **19c**. A suspension of potassium 2,2-dimethylpropanethioate (0.310 g, 2.00 mmol) in THF (8 mL) was added to CaI₂ (0.581 g, 1.98 mmol) in the same solvent (2 mL) and the mixture was stirred at 21 °C for 1 h. The resulting precipitates (KI) were filtered off. The filtrate was added to 15-crown-5 (0.441 g, 2.00 mmol) in THF solution (3 mL), and the mixture was stirred at 23 °C for 30 min. The resulting precipitates were filtered off, followed by washing with hexane (5 mL) and drying under reduce pressure (25 °C/0.4 Pa) for 1 h, to give 0.504 g (51%) of the compound **19c** as white micro crystals, m.p. 208–214 °C (decomp.) (Found: C, 38.87; H, 5.68; Calc. for C₁₇H₂₉CaIO₆S (528.06): C, 38.64; H, 5.53%); v_{max} (KBr)/cm⁻¹ 2948, 2884, 1654 (COS), 1618, 1560, 1542, 1522 , 1508, 1475 1458, 1357, 1290, 1248, 1087, 1042, 983, 954, 873, 828, 670 and 550; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 1.07 (9 H, s, C*H*₃) and 3.52 (20H, s, OC*H*₂); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 29.9 (*C*H₃), 47.0 (*C*), 69.9 (OCH₂) and 227.0 (*C*SO).

Barium (alkanecarbothioato)(iodo)(18-crown-6) 20

Barium (thioacetato)(iodo)(18-crown-6) **20a**. Similarly to **20b**, the reaction of sodium thioacetate (0.246 g, 2.51 mmol) and BaI₂ (0.512 g, 1.31 mmol) with 18-crown-6 (0.358 g, 1.35 mmol) at 23 °C for 1 h in THF (12 mL), followed by recrystallization from a mixed solvent of acetone (33 mL) and hexane (2.5 mL) at -20 °C for 24 h, gave 0.303 g (47%) of the compound **20a** as white needles, m.p. 178–183 °C (decomp.) (Found: C, 27.53; H, 4.70; Calc. for C₁₄H₂₇BaIO₇S (603.96): C, 27.86; H, 4.51%); ν_{max} (KBr)/cm⁻¹ 2915, 2889, 2865, 2832, 1626 (COS), 1596, 1535, 1468, 1451, 1434, 1351, 1287, 1252, 1236, 1094, 983, 962, 872, 833, 678, 531 and 484; δ_{H} (400 MHz; DMSO-*d*₆; Me₄Si) 2.19 (3 H, s, C*H*₃) and 3.63 (24 H, s, OC*H*₂); δ_{C} (100 MHz; DMSO-*d*₆; Me₄Si) 39.6 (CH₃), 69.8 (OCH₃) and 216.0 (COS).

Barium (2,2-dimethylpropanethioato)(iodo)(18-crown-6) **20b**. A suspension of potassium 2,2-dimethylpropanethioate (0.311 g, 2.22 mmol) in THF (8 mL) was added to BaI₂ (0.448 g, 1.15 mmol) in the same solvent (2 mL) and the mixture was stirred at 26 °C for 1 h. The resulting precipitates were filtered off by the use of glass filter. The filtrate was added to 18-crown-6 (0.315 g, 1.19 mmol) in THF solution (3 mL), and the mixture was stirred at 26 °C for 30 min. The resulting precipitates were filtered off, followed by washing with hexane (5 mL) and drying under reduce pressure (23 °C/0.4 Pa) for 1 h, to give white solid (0.588 g). The solid (0.588 g) was dissolved in acetone (17 mL). Hexane (1 mL) was slowly added, and the mixture was allowed to stand at -20 °C for 48 h. Filtration of the resulting crystals gave 0.143 g (24%) of the compound 20b as colorless micro needles, m.p. 196-204 °C (decomp.) (Found: C, 29.88; H, 5.19; Calc. for C₁₇H₃₃BaIO₇S (645.74): C, 29.76; H, 5.15%); v_{max} (KBr)/cm⁻¹ 2919, 2862, 2830, 1654 (COS), 1597, 1560, 1530, 1473, 1352, 1287, 1250, 1091, 1037, 964, 874, 838 and 531; $\delta_{\rm H}(400 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si})$ 1.18 (9 H, s, CH₃) and 3.83 (24 H, s, OCH₂); $\delta_{\rm C}(100 \text{ MHz}; \text{DMSO-}d_6; \text{Me}_4\text{Si}) 29.2 (CH_3), 48.3 (C), 70.3 (OCH_2) \text{ and } 231.9 (COS).$

2. X-Ray structure analyses

The measurements were carried out on a Rigaku AFC7R four-circle diffract meter with graphite-monochromated Mo-K α radiation ($\lambda = 0.71069$ Å). All of the structures were solved and refined using the teXsan[®] crystallographic software package on an IRIS Indigo computer. X-ray quality crystals of compounds 8b, 11b, 12b and 14b were obtained from acetone/hexane, while compounds 9b and 10c from acetonitrile/hexane, respectively. The crystals were cut from the grown needles. A suitable crystal was selected under the microscope and mounted on a glass fiber. The cell dimensions were determined from a least-squares refinement of the setting diffractometer angles for 25 automatically centered reflections. Three standard reflections were measured every 150 reflections and showed no significant intensity variations during the data collection. Lorentz and polarization corrections were applied to the data, and empirical absorption corrections (ψ -scans⁸⁵ for **8b**) were also applied. Crystal data are shown in the references. The structures were solved by direct methods (SHELXT-2014^{S6}) and refined by a full-matrix least square method on F^2 for all reflections (SHELXL-2014⁸⁷). All hydrogen atoms were placed using AFIX instructions, while all other atoms were refined anisotropically. Scattering factors for neutral atoms were from Cromer and Waber^{S8} and anomalous dispersion^{S9} was used. The final least square cycle included nonhydrogen atoms at calculated positions of which each isotropic thermal parameter was set to 1.2 times of that of the connecting atom. The crystal data, date correction and refinement details are summarized in Table S1. The H atoms, excluding those of water molecule, were placed in idealized positions and refined as riding atoms with isotropic displacement parameters that are 1.2 times of the attached atoms. Those of water molecule were located from difference Fourier maps and their positional parameters were refined with isotropic displacement parameters that are 1.2 times of the oxygen atom.

empirical formula formula weight color crystal system unit-cell dimentions (a = Å), (b = Å), (c = Å)	Compound 8b $C_{26}H_{36}CaO_8S_2$ 580.75 pale yellow prismatic monoclinic a = 8.867(2) Å b = 22.380(2) Å c = 14.372(2) Å	Compound 9b $C_{28}H_{38}CaO_8S_2$ 606.78 yellow prismatic monoclinic a = 8.082(2) Å b = 16.472(2) Å c = 22.655(2) Å	Compound 10c $C_{26}H_{34}O_9S_2Sr$ 642.27 pale yellow prismatic monoclinic a=8.606(2) Å b=14.452(2) Å c=22.606(2) Å	Compound 12b $C_{31}H_{44}BaO_9S_2$ 762.12 colorless prismatic triclinic <i>a</i> = 13.490(2) Å <i>b</i> = 16.032(1) Å <i>c</i> = 8.482(2) Å	Compound 14b $C_{28}H_{38}O_8Se_2Sr$ 748.12 yellow prismatic monoclinic a=7.686(2)Å b=13.944(2)Å c=14.556(2)Å
a (deg)	90.0000	90.0000	90.0000	94.8300	90.0000
β (deg)	93.6800	99.4400	94.5100	93.1300	99.1700
γ (deg)	90.0000	90.0000	90.0000	107.0590	90.0000
volume of unit cell ($Å^3$)	2846.1(8)	2975.1(9)	2802.9(8)	1741.4(5)	1540.1(5)
space group	$P2_1/n$ (#14)	$P2_{1}/c$ (#14)	$P2_1/n$ (#14)	P-1 (#2)	$P2_1/n$ (#14)
Z value	4	4	4	2	2
$D_{\text{cale}} (\text{g/cm}^3)$	1.355	1.355	1.522	1.453	1.613
crystal size (mm)	0.14 x 0.26 x 0.23	0.14 x 0.17 x 0.26	0.14 x 0.14 x 0.11	0.26 x 0.23 x 0.06	0.17 x 0.17 x 0.20
μ (Mo- K_{α}) (cm ⁻¹)	4.13	3.98	21.23	13.08	41.59
temp (°C)	-79.8	-79.8	-79.8	-79.8	-79.8
$\lambda_{MoKa}(Å)$	0.71069	0.71069	0.71069	0.71069	0.71069
$2\theta_{\rm max}$ (deg)	55.0 °	55.0	55.0	55.0	55.0
no. of measured reflections	6959	7311	7016	8520	4646
no. of observations $(I > 2\sigma(I))$	6549	6835	6441	7982	3516
no. of variables	342	354	345	392	179
residuals: $R^{a}_{,a} R^{b}_{,w}$	0.0618, 0.1542	0.0558, 0.1574	0.0629, 0.15.11	0.0295, 0.0681	0.0465, 0.1060
goodness of fit indicator	1.001	1.018	0.963	1.028	0.997

Table S1 Crystal data and data collection of Ca(OSCC₆H₄Me-4)₂(15-crown-5)(H₂O) 8b, Ca(OSCC₆H₄Me-4)(SOCC₆H₄Me-4)(18-crown-6) 9b,Sr(SOCC₆H₄OMe-4)₂(15-crown-5) 10c, Ba(SOCC₆H₄Me-4)₂(18-crown-6) 12b and Sr(SeOCC₆H₄Me-4)₂(18-crown-6) (Me₂CO) 14b

 $\overline{{}^{a} \operatorname{R} = \Sigma(\operatorname{IF}_{O} \operatorname{I} - \operatorname{IF}_{C} \operatorname{I})/\Sigma \operatorname{IF}_{O} \operatorname{I}. {}^{b} \operatorname{R}_{w}} = [\Sigma(\operatorname{IF}_{O} \operatorname{I} - \operatorname{IF}_{C} \operatorname{I})^{2}/\Sigma \operatorname{w} \operatorname{IF}_{O} \operatorname{I}^{2}]^{1/2}, \quad \operatorname{w} = [\sigma^{2}(\operatorname{F}_{O}) + p^{2}(\operatorname{F}_{O})^{2}/4]^{-1}.$

 Table S2
 Selected bond distances (Å), angles (°) and torsion angles of compounds 8b, 9b, 10c, 12b and 14b

Ca(OSCC ₆ H ₄ Me-4) ₂ (15	5-crown-5)(H ₂ O) 8b				
Bond lengths		Angles			
$\begin{array}{cccc} Ca(1)-O(1) & 2.333(4) \\ Ca(1)\cdots S(1) & 4.189(4) \\ S(1)-C(1) & 1.696(6) \\ O(1)-C(1) & 1.257(6) \\ Ca(1)-O(8) & 2.421(4) \\ Ca(1)-O(4) & 2.439(4) \\ Ca(1)-O(6) & 2.494(4) \\ S(1)\cdots O(8) & 3.194(4) \\ S(1)\cdots O(8) & 3.194(4)$	$\begin{array}{c} Ca(1)-O(2) & 2.35\\ Ca(1)\cdots S(2) & 4.01\\ S(2)-C(9) & 1.69\\ O(2)-C(9) & 1.25\\ Ca(1)-O(3) & 2.59\\ Ca(1)-O(5) & 2.54\\ Ca(1)-O(7) & 2.51\\ S(2)\cdots O(8) & 3.17\\ S(3)\cdots O$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$124.7(2) \\ 34.5(2) \\ 146.2(2) \\ 97.0(1) \\ 119.8(1) \\ 157.7(1) \\ 0 20.0(9) \\ 10.0(7$	$\begin{array}{c} S(2)-C(9)-O(2)\\ S(2)-Ca(1)-O(2)\\ Ca(1)-O(2)-C(9)\\ O(1)-Ca(1)-O(8)\\ O(6)-Ca(1)-O(2)\\ S(2)\cdots H(2)-O(8)\\ \end{array}$	121.5(2) 38.7(2) 138.4(2) 83.5(1) 149.9(1) 171.6(1) O(5) 174.5(1)
$S(1) \cdots H(1) = 2.30(4)$	$S(2) \cdots H(2) = 2.39$	(5) $S(2)-C(9)-O(2)-Ca(1)$ S(1)-C(1)-C(2)-C(7)	18.5(7)	S(2)-C(9)-C(10)-	C(15) 24.6(6)
Ca(OSCC_H_Me-4)(SO	CC ₂ H ₄ Me-4)(18-cro	vn-6) 9b	,		
Bond lengths		Angles			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} Ca(1)-S(2) & 2.96\\ Ca(1)-O(2) & 2.41\\ S(2)-C(9) & 1.70\\ O(2)-C(9) & 1.25\\ Ca(1)-O(4) & 2.54\\ Ca(1)-O(6) & 2.64\\ Ca(1)-O(8) & 2.61\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	124.0(4)20.43(8)170.9(3)41.0(2)51.32(9)5.7(2)6.7(6)13.52(4)	$\begin{array}{l} S(2)-C(9)-O(2)\\ S(2)-Ca(1)-O(2)\\ Ca(1)-O(2)-C(9)\\ Ca(1)-S(2)-C(9))\\ O(1)-Ca(1)-O(2)\\ \end{array}$	121.3(3) 56.39(8) 105.7(3) 74.7(2) 150.3(1) D(2) 12.4(3) C(11) 3.7(6)
$SI(SOCC_6II_4OIMe-4)_2(I)$	5-clowii-5) 10c	A			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} Sr(1)-S(2) & 3.01\\ Sr(1)-O(3) & 2.57\\ S(2)-C(9) & 1.71\\ O(3)-C(9) & 1.24\\ Sr(1)-O(6) & 2.79\\ \end{array}$	Angles $\Theta(2)$ $S(1)$ - $C(1)$ - $O(1)$ $7(5)$ $S(1)$ - $Sr(1)$ - $O(1)$ $8(7)$ $Sr(1)$ - $O(1)$ - $C(1)$ $6(8)$ $S(1)$ - $Sr(1)$ - $S(2)$ $6(5)$ $O(6)$ - $Sr(1)$ - $O(9)$	123.2(6) 78.7(1) 107.3(1) 77.48(6) 103.5(2)	S(2)-C(9)-O(3) S(2)-Sr(1)-O(3) Sr(1)-O(3)-C(9) O(1)-Sr(1)-O(3) S(1)-Sr(1)-O(9)	121.6(2) 54.6(1) 100.7(4) 93.1(1) 78.7(1)
Sr(1)=O(7) = 2.732(5) Sr(1)=O(9) = 2.660(5)	Sr(1) - O(8) = 2.68	6(5)	Torsi	on angles	
51(1) 5(7) 2.000(5)		Sr(1)-O(1)-C(1)-S(1) S(1)-C(1)-C(2)-C(7) O(1)-S(1)-Sr(1)-O(3) O(8)-O(9)-Sr(1)-O(5)	3.3(7) 20.8(9) 66.3(2) 161.2(2)	Sr(1)-O(3)-C(9)-S S(2)-C(9)-C(10)- O(5)-O(6)-Sr(1)-	S(2) 31.6(6) C(11) 12(1) O(7) 123.8(2)
Ba(OSCC ₆ H ₄ Me-4) ₂ (18	-crown-6)·Me ₂ CO 12	b			
Bond lengths		Angles			
Ba(1)-S(1) 3.376(1) Ba(1)-O(1) 2.780(2) S(1)-C(1) 1.708(3) O(1)-C(1) 1.237(4) Ba(1)-O(3) 2.806(2) Ba(1)-O(3) 2.806(2) Ba(2) O(5) 2.835(2) Ba(1)-O(3) 2.806(2) Ba(1)-O(3	Ba(1)-S(2) 3.259 Ba(1)-O(2) 2.856 S(2)-C(9) 1.715 O(2)-C(9) 1.242 Ba(1)-O(4) 2.840 Da(1)-O(4) 2.704	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.4(2) 18.83(5) 110.3(2) 18.38(2) 55.65(6)	$\begin{array}{l} S(2)-C(9)-O(2)\\ S(2)-Ba(1)-O(2)\\ C(9)-O(2)-Ba(1)\\ O(1)-Ba(1)-O(2)\\ O(8)-Ba(1)-S(2) \end{array}$	122.5(2) 49.84(4) 106.0(2) 133.83(6) 101.27(4)
Ba(1)=O(5) 2.855(2) Ba(1)=O(7) 2.801(2)	Ba(1)–O(6) 2.794 Ba(1)–O(8) 2.807	$\begin{array}{l} \begin{array}{c} 2 \\ 2 \end{array} & \mbox{Torsion angles} \\ \mbox{Ba}(1) - S(1) - C(1) - O(1) \\ S(1) - C(1) - C(2) - C(3) \\ C(1) - S(1) - Ba(1) - O(2) \\ O(1) - S(1) - O(2) - S(2) \end{array}$) 9.1(2) 178.7(2)) 108.5(1) 97.74(8)	Ba(1)-S(2)-C(9)-C(9)-C(9)-C(10	D(2)11.5(2)C(15)4.2(4)D(1)109.3(1)
Sr(SeOCC ₆ H ₄ Me-4) ₂ (18	8-crown-6) 14b				
$\begin{array}{l} \mbox{Bond lengths} \\ Sr(1)-Se(1) & 3.4923(7) \\ Sr(1)-O(1) & 2.594(4) \\ Se(1)-C(1) & 1.864(5) \\ O(1)-C(1) & 1.247(6) \\ Sr(1)-O(3) & 2.704(3) \\ \end{array}$	Sr(1)–O(2) 2.692 Sr(1)–O(4) 2.818	$\begin{array}{c} \text{Angles} \\ (3) & \text{Se}(1)\text{-}\text{C}(1)\text{-}\text{O}(1) & \text{I}.2 \\ (3) & \text{Se}(1)\text{-}\text{Sr}(1)\text{-}\text{O}(1) & \text{St}(1) \\ & \text{C}(1)\text{-}\text{O}(1)\text{-}\text{Sr}(1) & 1 \\ & \text{O}(1)\text{-}\text{Sr}(1)\text{-}\text{O}(2) & 10 \\ & \text{O}(1)\text{-}\text{Sr}(1)\text{-}\text{O}(3) & 7.2 \\ \end{array}$	20.9(4) 0.56(8) 15.3(3) 04.9(1) 2.14(1)	Torsion angles Sr(1)–Se(1)–C(1)– Se(1)-C(1)–C(2)-C O(1)-C(11)-C(12)- Se(1)-O(1)-Se(1')-	O(1) 17.1(1) C(7) 1.3(7) -C(13) 6.1(6) O(1') 180.0(1)

Fig. S1 Side [(a) and (b)] and back side views ((a') and (b') from arrow in (a) and (b), respectively) of Ca(OSCC₆H₄OMe-4)₂ (15-crown-5) **8b** and Sr(OSCC₆H₄OMe-4)₂ (15-crown-5) **10c**, respectively. Deep blue, yellow, red, dark gray, white and violet balls are calcium, sulfur, oxygen, carbon sand strontium atoms, respectively. All hydrogen atoms except for those of H₂O in compound **8b** are omitted for clarity. For (a') and (b'), large red balls show the oxygen atoms of the crown ether in a space filling model.

Fig. S2 Structural comparison of (a) $Ca(OSCC_6H_4Me-4)(SOCC_6H_4Me-4)(18$ -crown-6) **9b**, (b) $Ba(SOCC_6H_4Me-4)_2(18$ -crown-6) (Me₂CO) **12b**, and (c) $Sr(SeOCC_6H_4Me-4)_2(18$ -crown-6) **14b**. eep blue, violet, green, yellow, light blue, red, and dark gray balls are calcium, strontium, barium, sulfur, selenium, oxygen and carbon atoms, respectively. For (a), large red balls are the oxygen atoms of 18-crown-6 in a space filling model. For (b) and (c), large green and violet balls are barium and strontium atom in a space filling model, respectively.

Fig. S3 Intermolecular short contacts (a) and arrangements (b-d) of compound **9b**. Deep blue, yellow, red, dark gray and white balls show calcium, sulfur, oxygen and carbon atoms, respectively. Red for (a) and light blue dotted lines for (b)-(d) show intermolecular short contacts. For (a), dashed atoms are those of neighboring molecules. For (b), one dimensional molecular chain formed by both intermolecular C=O···H₂C hydrogen bondings and short contacts between the methylene hydrogen atoms (H_{CH2}···H_{CH2}). For (c), 2-D sheet formed by both intermolecular C=S···H_{CH3} hydrogen bondings and H_{CH2}···H_{CH2} short contacts between the molecular chain. For (d), 3-D networks formed by stacking of the sheet.

Fig. S4 Intermolecular short contacts (a) and molecular arrangements (b-c) of compound **12b**. Green, yellow, red, dark gray and white balls show barium, sulfur, oxygen, carbon and hydrogen atoms, respectively. For (a), dashed atoms are those of neighboring molecules. For (b), one dimensional molecular chain formed by short contacts of these molecular chains. For (c), 2-D sheet formed by intermolecular CH···O hydrogen bond between these molecular chains. For (d), 3-D networks formed by stacking of these sheets. Red for (a) and light blue dotted lines for (b) show intermolecular short contacts. For (b) and (c), the solvent molecules Me₂CO trapped in the central channel are shown in a red dotted circle, respectively.

Fig. S5 Intermolecular short contacts (a) and molecular arrangements (b-d) of compound 14b. Violet, pink, red, dark gray and white balls show strontium, selenium, oxygen, carbon and hydrogen atoms, respectively. Red for (a) or light blue dotted lines for (b)-(c) show intermolecular short contacts. For (a), dashed-atoms are those of neighboring molecules. For (b), one dimensional chain formed by the intermolecular $H_{CH2}\cdots H_{arom}$ contacts. For (c), 2-D sheet formed by short contacts of these molecular chains. For (d), 3-D networks formed by stacking of these sheets.

Fig. S6 Packing of $Ca(OSCC_6H_4Me-4)_2(15$ -crown-5)·(H₂O) **8b** view down the a-axis. Green, yellow, gray and red balls are calcium, sulfur, carbon and oxygen atoms, respectively. All hydrogen atoms are omitted for clarity. Structures **8b-A**, **8b-A'**, **8b-B** and **8b-B'** are enantiomorphic, each other.

Fig. S7 Packing of Ca(OSCC₆H₄Me-4)(SOSCC₆H₄Me-4)(18-crown-6) **9b** view down the a-axis. Green, yellow, gray and red balls are calcium, sulfur, carbon and oxygen atoms, respectively. All hydrogen atoms are omitted for clarity. Structures **9b-A**, **9b-A'**, **9b-B** and **9b-B'** are enantiomorphic, each other.

Fig. S8 Packing and (b) intermolecular short contacts of $Sr(SOCC_6H_4OMe-4)_2(15$ -crown-5) 10c view down the a-axis. Green, yellowt, gray and red balls are strontium, sulfur, carbon and oxygen atoms, respectively. All hydrogen atoms are omitted for clarity. Structures 10c-A, 10c-A', 10c-B and 10c-B' are enantiomorphic, each other.

Fig. S9 Packing of $Ba(SOCC_6H_4Me-4)_2(18$ -crown-6)·(Me₂CO) 12b view down the c-axis. Green, yellow, gray and red balls are barium, sulfur, carbon and oxygen atoms, respectively. All hydrogen atoms are omitted for clarity. Structures 12b-A and 12b-A' are enantiomorphic, each other.

Fig. S10 Packing of $Sr(SeOCC_6H_4Me-4)_2(18$ -crown-6) **14b** view down the a-axis. Green, dark yellow, gray and red balls are strontium, selenium, carbon and oxygen atoms, respectively. All hydrogen atoms are omitted for clarity. Structures **14b-A**, **14b-B**, **14b-B**; **14b-B**'; **14b-C**; **14b-D**, **14b-D'**; and **14b-E**, **14b-E'** are enantiomorphic, each other.

Spectroscopic measurement

Table S3 The IR, ¹³C and ⁷⁷Se NMR spectra of Group 2 metal bis(4-methylbenzenecarbochalcogenoato)crown ether complexes 7-18 M(E'ECR)₂(crown ether)(L)

	M(E'ECR)2(crown ether)(L)					vCEE ^{sa}		¹³ CEE ^{tb}	⁷⁷ Se ^b
No.	М	R	E	E'	crown ether	L	/cm ⁻¹	$\delta_{\rm C}$	δ_{Se}
7b	Mg	4-MeC ₆ H ₄	0	S	15-crown-5	H ₂ O ^c	1487	208.0	
8b	Ca		õ	S	15-crown-5	H ₂ O	1510	207.3	
9b			õ	S	18-crown-6	-	1459	209.2	
10c	Sr		Õ	S	15-crown-5	-	1471	209.2	
11b			õ	S	18-crown-6	-	1492	213.5 ^d	
12b	Ba		õ	S	18-crown-6	-	1507	208.6	
13b	Ca		õ	Se	15-crown-5	-	1577	208.3	459.2
14b	Sr		õ	Se	18-crown-6	-	1515	210.5	446.8
15b	Ba		õ	Se	18-crown-6	-	1523	210.3	447.6
16b	Ca		S	S	18-crown-6	-	981?	249.6	
17b	Sr		S	S	18-crown-6	-	1018	249.6	
18b	Ba		S	S	18-crown-6	-	1020	249.4	

^aKBr. ^bDMSO-d₆. ^cThe number of water molecules is unclear (>H₂O ?). ^dAcetone-d₆

3. References

- S1. S. Kato, M. Oguri and M. Ishida, Z. Naturforsch., Sect. B, 1983, 38 1585-1590.
- S2. S. Kato, H. Kageyama, K. Takagi, K. Mizoguchi and T. Murai, J. Prakt. Chem. 1990, 332, 839-810.
- S3. H. Ishihara, S. Sato and Y. Hirabayashi, Y. Bull. Chem. Soc. Jpn. 1977, 50, 3007-3009.
- S4. S. Kato, S. Yamada, H. Goto, K. Terashima, M. Mizuta and T. Katada, Z. Naturforsch., Sect. B, 1980, 35, 458-462.
- S5. A. C. T. North, D. C. Philips and F. S. Mathews, *Acta Crystallogr. Sect. A*, 1968, 24, 351-359.
- S6. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. Acta Cryst., 2015, A71, 3-8, 10.1107/S2053273314026370.
- S7. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112-122, 10.1107/S0108767307043930.
- S8. D. T. Cromer and J. T. Waber, *International Tables for X-ray Crystallography*, The Kynoch Press, Birmingham, 1974, Vol. IV, Table 2.2.A.
- S9. D. C. Creagh and W. J. McAuley, in *International Tables for X-ray Crystallography*, ed. A. J. C. Wilson, Kluwer Academic Publishers, Boston, 1992, Vol. C, Table 4.2.6.8, pp. 219-266.