The new diphosphanylphosphido complexes of Tungsten(VI) and Molybdenum(VI). Their synthesis, structures and properties.

A. Wiśniewska,^a R. Grubba^a, Ł. Ponikiewski^a, M. Zauliczny^a and J. Pikies^a

^aChemical Faculty, Department of Inorganic Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12. Pl-80-233 Gdansk (Poland)

SUPPLEMENTARY MATERIALS

*To whom correspondence should be addressed: Email: alewisni3@pg.edu.pl

Part A. X-ray crystallographic analysis

Part B. DFT results

Part C. NMR data

Part D. References

Part A. X-ray crystallographic analysis

Diffraction data of $tBu_2P-P(Li)-P(NEt_2)_2$, 2W, 2Mo, 3W and 3Mo was collected on diffractometer equipped with a STOE image plate detektor system IPDS2T using CuK α radiation with graphite monochromatization ($\lambda = 1.54178$ Å) for 2W and MoK α radiation with graphite monochromatization ($\lambda = 0.71073$ Å) for $tBu_2P-P(Li)-P(NEt_2)_2$, 2Mo, 3W and 3Mo. Good quality single-crystal specimens of $tBu_2P-P(Li)-P(NEt_2)_2$, 2Mo, 3W and 3Mo were selected for the X-ray diffraction at 120 K. The structure were solved by direct methods and refined against F² using the Shelxs-97 and Shelxl-97 programs¹ run under WinGX.² Nonhydrogen atoms were refined with anisotropic displacement parameters; hydrogen atoms were usually refined using the isotropic model with $U_{iso}(H)$ values fixed to be 1.5 times U_{eq} of C atoms for $-CH_3$ or 1.2 times U_{eq} for -CH, $-CH_2$ groups and aromatic H.

Crystallographic data for the structures of **tBu₂P-P(Li)-P(NEt₂)₂, 2Mo, 3W and 3Mo** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 1838374-1838378. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: (+44) 1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Figure S1. Molecular structure of **2Mo** (30% probability displacement ellipsoids), H atoms have been omitted for clarity. Important bond lengths (Å) and bond angles (deg): P1-P2 2.153(4), P1-P3 2.240(3), P2-Mo1 2.549(3), P1-Mo1 2.564(2), Mo1-Cl1 2.407(2), Mo1-N1 1.764(7), Mo1-N2 1.768(9), P1-Mo1-P2 49.80(8), N1-Mo1-N2 116.2(4), C1-N1-Mo1 171.9(8), C13-N2-Mo1 168.3(6), P2-P1-P3 103.11(15), P2-P1-Mo1 64.74(9), P3-P1-Mo1 106.19(11). ΣP1 = 274.02, ΣP2 = 353.19, ΣP3 = 300.19.

Figure S2. Molecular structure of **3Mo** (30% probability displacement ellipsoids), H atoms have been omitted for clarity. Important bond lengths (Å) and bond angles (deg): P1-P2 2.1573(9), P1-P3 2.2394(9), P2-Mo1 2.5515(7), P1-Mo1 2.5208(7), Mo1-Cl1 2.3915(6), Mo1-N1 1.772(2), Mo1-N2 1.761(2), P1-Mo1-P2 50.34(2), N1-Mo1-N2 112.89(10), C1-N1-Mo1 174.5(2), C13-N2-Mo1 154.24(19), P2-P1-P3 109.78(4), P2-P1-Mo1 65.57(3), P3-P1-Mo1 107.72(3). ΣP1 = 283.05, ΣP2 = 345.45, ΣP3 = 307.76.

	tBu₂P-P(Li)-	2W	2Mo	3W	ЗМо
	P(NEt ₂) ₂				
Empirical	$C_{24}H_{54}LiN_2O_2P_3$	$C_{36}H_{62}WN_2P_3CI$	C ₃₆ H ₆₂ MoN ₂ P ₃ Cl	C ₄₀ H ₇₂ WN ₄ P ₃ Cl	C ₄₀ H ₇₂ MoN ₄ P ₃ Cl
formula					
Formula weight	502.54	835.08	747.17	921.22	833.31
Temperature	120	120	120	120	120
(К)					
Wavelenght (Å)	0.71073	1.54186	0.71073	0.71073	0.71073
(Mo/Cu Kα)					
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P 21/n	P 21	P 21	P-1	P-1
a (Å)	9.1291(5)	10.5090(5)	10.5885(16)	11.0041(4)	11.0012(10)
b (Å)	17.0931(6)	20.8420(9)	20.9626(16)	20.8898(7)	20.8791(14)
c (Å)	19.4531(10)	18.5788(8)	18.7533(17)	22.1047(7)	22.0534(14)
α(°)	90	90	90	106.063(3)	105.878(5)
в (°)	95.954(4)	98.817(4)	99.040(10)	102.935(3)	102.963(6)
γ (°)	90	90	90	101.944(3)	102.300(7)
V (Å ³)	3019.2(3)	4021.2(3)	4110.8(8)	4558.6(3)	4540.1(6)
Ζ	4	4	2	4	4
D _{Calc} (Mg m ⁻³)	1.106	1.379	1.207	1.342	1.219
Crystal size	0.18x0.17x0.15	0.18x0.17x0.15	0.25x0.24x0.24	0.24x0.24x0.23	0.24x0.24x0.22
(mm)					
ϑ Range (°)	3.273-26.999	3.208-66.988	2.233-26.999	3.227-28	3.14-27
Reflections	6457/4893	13463/ 12932	11692/9020	21947/12693	19480/15043
collected/uniqu					
e					
Completness to	97.6	97.7	99.9	99.6	98.1
ðmax (%)					
Refinement	Full-matrix least	Full-matrix least	Full-matrix least	Full-matrix least	Full-matrix least
method	-squares on F	-squares on F	-squares on F	-squares on F	-squares on F
Data/restraints /parameters	6457/0/289	13463/1/ 584	11692/1///5	21947/6/902	19480/1/883
Goodness-of-fit	1.051	1.16	1.01	0.924	1.023
on F^2					
Final R indices	R1 = 0.0628	R1 = 0.0847	R1 = 0.0871	R1 = 0.1057	R1 = 0.0562
[I>2σ(I)] R	wR2 = 0.1241	wR2 = 0.223	wR2 = 0.1493	wR2 = 0.1628	wR2 = 0.1031
indices (all	R1 = 0.0439	R1 = 0.0748	R1 = 0.0623	R1 = 0.0551	R1 = 0.0387
data)	wR2 = 0.1132	wR2 = 0.1918	wR2 = 0.13	wR2 = 0.1295	wR2 = 0.0938
Summary of	1838374	1838378	1838375	1838377	1838376
Data CCDC					

Table 1. Crystallographic data of tBu2P-P(Li)-P(NEt2)2, 2W, 2Mo, 3W and 3Mo

Part B. DFT results

All calculations were performed using Amsterdam Density Functional (ADF) package (version 2016.101)³. Calculations were carried out with the General Gradient Approximation (GGA) functional BLYP (Becke⁴ for the exchange part and Lee, Young, Parr⁵ for the correlation part) with Grimme's dispersion correction with additional Becke and Johnson damping functions (-D3BJ)⁶. All atoms were described by a Slater-type triple- ζ quality basis set with two polarization functions, corresponding to TZ2P basis set⁷ in the ADF package. Relativistic effects were included using scalar Zeroth Order Regular Approximation (scalar ZORA) model⁸.

Starting geometries for all compounds were taken from experimental crystallographic data and optimized.

On optimized geometries series of other calculations were conducted – Natural Bonding Orbitals (NBO) analysis, Hirshfeld population analysis⁹ and condensed Fukui function analysi¹⁰.

Natural Bonding Orbitals (NBO, version 6.0)¹¹ analysis, was performed on all optimized geometries. Calculations included Natural Localized Molecular Orbitals (NLMO)¹² and Natural Population Analysis (NPA)¹³.

In order to evaluate reactive centers in nucleophilic or electrophilic attack reactions we have used Fukui functions – f^+ for a nucleophilic attack and f^- for an electrophilic attack. Condensed Fukui functions were obtained (localized using Hirshfeld Population Analysis) to quantitatively assign properties to atoms. To further classify these reactive centers in the means of HSAB¹⁴ theory local softness was calculated. The local softness is computed as overall softness (defined as the inverse of the HOMO-LUMO gap¹⁵), multiplied by condensed Fukui function for selected atom.

Figure S3. Graphical representation of the NBOs of **2W** associated to: a) σ (P1P2), b) σ (P2P3), c) P1 lone pair, d) P3 lone pair, e) σ (P1W), f) σ (P2W).

Figure S4. Graphical representation of the NBOs of **3W** associated to: a) $\sigma(P1P2)$, b) $\sigma(P2P3)$, c) P1 lone pair, d) P3 lone pair, e) $\sigma(P1W)$, f) $\sigma(P2W)$.

Part C. NMR data

1. NMR data for **2W**

2. NMR data for **3W**

¹H NMR

$^{31}P{}^{1}H}NMR$

3. NMR data for **3Mo**

³¹P{¹H} NMR

4. NMR spectra mixture of reaction (8)

 $^{31}P{}^{1}H} NMR$

5. ${}^{31}P{}^{1}H} NMR$ spectra mixture of reaction (9)

Part D. References

- 1. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, A64, 112-122.
- Farrugia, J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837-838.
- 3. (a) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T., Chemistry with ADF. Journal of Computational Chemistry 2001, 22 (9), 931-967; (b) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J., Towards an order-N DFT method. Theoretical Chemistry Accounts 1998, 99 (6), 391-403; (c) E.J. Baerends, T. Z., A.J. Atkins, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev ADF2016, 2016.107; Theoretical Chemistry, Vrije Universiteit.
- 4. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. *Physical Review A* **1988**, *38* (6), 3098-3100.
- 5. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B* **1988**, *37* (2), 785-789.
- 6. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *Journal of Computational Chemistry* **2011**, *32* (7), 1456-1465.
- 7. Van Lenthe, E.; Baerends, E. J., Optimized Slater-type basis sets for the elements 1–118. *Journal of Computational Chemistry* **2003**, *24* (9), 1142-1156.
- (a) Lenthe, E. v.; Baerends, E. J.; Snijders, J. G., Relativistic regular two-component Hamiltonians. *The Journal of Chemical Physics* **1993**, *99* (6), 4597-4610; (b) Lenthe, E. v.; Baerends, E. J.; Snijders, J. G., Relativistic total energy using regular approximations. *The Journal of Chemical Physics* **1994**, *101* (11), 9783-9792; (c) Lenthe, E. v.; Ehlers, A.; Baerends, E.-J., Geometry optimizations in the zero order regular approximation for relativistic effects. *The Journal of Chemical Physics* **1999**, *110* (18), 8943-8953.
- 9. Hirshfeld, F. L., Bonded-atom fragments for describing molecular charge densities. *Theoretica chimica acta* **1977**, *44* (2), 129-138.
- 10. Parr, R. G.; Yang, W., Density functional approach to the frontier-electron theory of chemical reactivity. *Journal of the American Chemical Society* **1984**, *106* (14), 4049-4050.
- E. D. Glendening, J., K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold *NBO 6.0*, Theoretical Chemistry Institute, University of Wisconsin: 2013.
- 12. Reed, A. E.; Weinhold, F., Natural localized molecular orbitals. *The Journal of Chemical Physics* **1985**, *83* (4), 1736-1740

- 13. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural population analysis. *The Journal of Chemical Physics* **1985**, *83* (2), 735-746.
- 14. Pearson, R. G., Hard and Soft Acids and Bases. *Journal of the American Chemical Society* **1963**, *85* (22), 3533-3539.
- (a) Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter to absolute electronegativity. *Journal of the American Chemical Society* **1983**, *105* (26), 7512-7516; (b) Pearson, R. G., Chemical hardness and density functional theory. *Journal of Chemical Sciences* **2005**, *117* (5), 369-377.