Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Solvatomorphism and anion effects in predominantly low spin iron(III) Schiff base complexes

Theerapoom Boonprab,^a Phimphaka Harding,^a Keith S. Murray,^b Wasinee Phonsri,^b Shane G. Telfer,^c Adil Alkaş,^c Rangsiman Ketkaew,^d Yuthana Tantirungrotechai,^d Guy N. L. Jameson^e and David J. Harding^{a*}

E-mail: hdavid@mail.wu.ac.th

^a Functional Materials and Nanotechnology Centre of Excellence (FuNTech), Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.

^b School of Chemistry, Monash University, Clayton, Melbourne, Victoria, 3800, Australia.

- ^c MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- ^d Computational Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120 Thailand.

^e School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, The University of Melbourne, Parkville, Victoria 3010, Australia.

Contents

¹ H NMR and IR spectra of HnaphEen	2
IR spectra of 1-4	3
TGA studies of [Fe(naphEen) ₂]F	5
Crystal packing figures	5
Mössbauer spectroscopic studies	7

NMR and IR spectra of HnaphEen and [Fe(naphEen)₂]halide

Figure S1 ¹H NMR spectrum of HnaphEen. Note that the peak 1.65 ppm is due to water.

Figure S2 IR spectrum of HnaphEen.

Figure S3 IR spectra of [Fe(naphEen)₂]halide.

TGA Studies of [Fe(naphEen)₂]F

Figure S4 TGA analysis of [Fe(naphEen)₂]F.

Figure S5 View of the supramolecular squares in **3** and **4** at 293 K. In the case of **3** the Fe1, Fe2 and Fe3 centres are coloured orange, purple and green, respectively.

Figure S6 View of the 'Butterfly' motif in $[Fe(naphEen)_2]I$ **4** viewed down the *a* axis.

$Fe(naphEen)_2$ JBr·H ₂ O 3 that make up the Fe squares.					
	2-123 К	3-123 К	3-293 К Fe1-Fe2		
Fe1					
С-Н…π	2.831(3) {H27B…Cg (C9-C10)}	2.861(4) {H27A…Cg (C9-C10)}	2.86(3) (H52…C18)		
π-π	3.253(6) (plane-to-plane) 3.731(4) (Cg …Cg)	3.283(9) (plane-to-plane) 3.782(6) (Cg…Cg)	3.19(4) (C22…C37)		
Fe2			Fe-3		
C-H…O	2.638(4) (H39…O4)	2.672(5) (H39…O4)	-		
С-Н…π	2.694(6) (H55…C32)	2.689(8) (H55…C32)	2.781(15) {H90B…Cg (C1-C6)}		
C-H…π	2.769(4) {H27B…Cg (C35-C40)}	2.810(5) {H27B…Cg (C35-C40)}	2.79(1) {H87B…Cg (C35-C40)}		
C-H …π	-	-	2.82(2) (H82…C33)		
π-π	-	-	3.16(6) {C67…C67*)		

Table S1 Summary of the supramolecular contacts in $[Fe(naphEen)_2]Cl \cdot H_2O$ **2** and $[Fe(naphEen)_2]Br \cdot H_2O$ **3** that make up the Fe squares.

	4-293 K
Fe1	
С-Η…π	2.84(3) (H23… C2)
	2.707(9) (H30B…Cg)
π-π	3.30(3) (plane-to-plane)
	4.366(17) (Cg…Cg)
C-H…I	3.089(2) (H18 ··I1)

Table S2 Summary of the supramolecular contacts in [Fe(naphEen)₂]I **4** that make up the Fe squares.

Mössbauer spectroscopic studies

Table S3 ⁵⁷ Fe Mössbauer spectral properties of 1	
Table 35 Fe Wossbauer spectral properties of 1 .	

т (к)	State	δ (mm/s)	∆E _Q (mm/s)	В (Т)	Γ∟ (mm/s)	Γ _R (mm/s)	I (%)
291	HS	0.39	0.71	-	0.50	0.53	71
	LS	0.16	2.70	-	0.49	0.42	29
5.1	HS	0.51	0.69	-	0.56	0.57	36
	HS2	0.50	-	48	0.70	0.70	20
	LS	0.22	2.79		0.61	0.44	44