Supporting information

A novel sensitive fluorescent probe of $S_2O_8^{2-}$ and Fe^{3+} based on covalent post-functionalization of zirconium (IV) metal-organic framework

Shu-Yin Zhu and Bing Yan*

School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

E-mail: byan@tongji.edu.cn.

The limit of detection was evaluated on the ratio of signal-to-noise of 3 by the following equations,

$$S_{b} = \sqrt{\frac{\sum (F_{0} - F_{1})^{2}}{N - 1}}$$
(1)

 $LOD = 3S_b / S$ (2)

where Sb is the standard deviation for replicating detections of blank solutions (N=30); F0 is the emission intensity of UiO-66-NH₂-IM in water; F1 is the average of F0; and S is the slope of the liner relationship. We hope we have provided the detailed information about the calculation of the detection limit.

UiO-66-NH₂

UiO-66-NH₂-IM

Scheme S1 Synthetic route of UiO-66-NH $_2$ -IM via a covalent PSM method based on Schiff base reaction.

Fig. S1 SEM images of the as-prepared UiO-66-NH₂ (a), UiO-66-NH₂-IM (b) and TEM images of the as-prepared UiO-66-NH₂ (c), UiO-66-NH₂-IM (d).

Fig. S2 1 H NMR spectra of digested UiO-66-NH₂ (a) and UiO-66-NH₂-IM (b).

Fig. S3 N_2 adsorption-desorption isotherms of UiO-66-NH₂ and UiO-66-NH₂-IM.

Fig. S4 TGA traces of compound UiO-66-NH $_{\rm 2}$ and UiO-66-NH $_{\rm 2}$ -IM.

Fig. S5 Room temperature excitation and emission spectra of free ligand NH₂-BDC in solid state.

Fig. S6 Day-to-day fluorescence stability of UiO-66-NH₂-IM in aqueous solution under excitation at 330nm.

Fig. S7 PXRD pattern of UiO-66-NH₂-IM after dispersed in water.

Decay Time / μm

Fig. S8 Fluorescence lifetime of UiO-66-NH₂-IM in the absence and presence of $S_2O_8^{2-}$ in aqueous solution.

Fig. S9 Fluorescence PXRD patterns of the UiO-66-NH₂-IM after immersing in different anions.

Fig. S10 PL spectra of UiO-66-NH₂-IM (2 mg) after dispersed into different aqueous solution of various metal ions (10 mM).

Fig. S11 Emission spectra (a) and K_{sv} curve (b) of UiO-66-NH₂-IMin aqueous solutions in the presence of various concentrations of Fe³⁺ when excited at 330 nm.

Fig. S12 Luminescence intensity of UiO-66-NH₂-IM when Fe^{3+} is added in the background of metal cations in aqueous solution when excited at 330 nm.

Fig. S13 PXRD patterns of the UiO-66-NH2-IM after immersing in different metal ions.