Luminescent Protein Staining with $\operatorname{Re}(I)$ Tetrazolato Complexes

Valentina Fiorini, ${ }^{\text {a }}$ Linda Bergamini, ${ }^{\text {a }}$ Nicola Monti, ${ }^{\text {a }}$ Stefano Zacchini, ${ }^{\text {a }}$ Sally E.

Plush, ${ }^{\text {b }}$ Massimiliano Massi, ${ }^{\text {c }}$ Alejandro Hochkoeppler, ${ }^{\text {d, e }}$ Alessandra Stefan, ${ }^{\text {d, e* }}$

Stefano Stagnia*

a: Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, l-40136 Bologna, Italy.
b: School of Pharmacy and Medical Sciences and the Future Industries Institute University of South Australia, Adelaide, Australia.
c: Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Kent Street, Bentley 6102 WA, Australia.
d: CSGI, Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino (FI), Italy.
e: Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

ESI - Electronic Supplementary Information

Table S1. Stretching frequencies (cm^{-1}) of the CO bands of all the $\operatorname{Re}(I)$ complexes reported in this work. Values are relative to solution state (dichloromethane as the solvent) IR spectra recorded at room temperature.

Complex	CO A $^{\prime} \mathbf{(1)}$	CO A $^{\prime}(\mathbf{2}) / \mathbf{A}^{\prime \prime}$
fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}$	2029	1918
fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BPS})(\mathrm{Tph})\right]^{2-}$	2026	1914
fac- $\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph})\right]$	2022	1918
fac- $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}$	2037	1934

Figure S1: ESI-MS of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}$, negative region ions, $\mathrm{CH}_{3} \mathrm{OH}$.

Figure S2: ESI-MS of fac-[Re(CO) $\left.\mathbf{3}_{3}(\mathrm{BPS})(\mathrm{Tph})\right]^{2-}$, negative region ions, $\mathrm{CH}_{3} \mathrm{OH}$.

Figure S3: ESI-MS of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h)\right]$, positive region ions, $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S4: ESI-MS of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h-M e)\right]^{+}$, positive region ions, $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S5: ${ }^{1} \mathrm{H}$ NMR of $f a c-\left[\operatorname{Re}(C O)_{3}(B C S)(T p h)\right]^{2-}, C D_{3} O D, 400 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S6: ${ }^{13} \mathrm{C}$ NMR of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}, \mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S7: ${ }^{1} \mathrm{H}$ NMR of $f a c-\left[\operatorname{Re}(C O)_{3}(B P S)(T p h)\right]^{2-}, C D_{3} O D, 400 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S8: ${ }^{13} \mathrm{C}$ NMR of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BPS})(\mathrm{Tph})\right]^{2-}, \mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h)\right]$, Acetone $d^{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S10: ${ }^{13} \mathrm{C}$ NMR of fac-[$\left.\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BC})(T p h)\right]$, Acetone $d^{6}, 100 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S11: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$ NMR of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BC})(T p h)\right]$, Acetone $d^{6}, 600 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S12: ${ }^{1} \mathrm{H}$ NMR of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}$, Acetone $d^{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S13: ${ }^{13} \mathrm{C}$ NMR of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}$, Acetone $d^{6}, 100 \mathrm{MHz}, 298 \mathrm{~K}$.

[^0]Figure S14: ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$ NMR of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BC})(T p h-M e)\right]^{+}$, Acetone $d^{6}, 600 \mathrm{MHz}, 298 \mathrm{~K}$.

Figure S15: ${ }^{1} \mathrm{H}$ NMR and NOESY (overlay, 3.22 and 3.55 ppm) NMR of fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathrm{BC})(\mathbf{T p h}-\mathrm{Me})\right]^{+}$, Acetone $d^{6}, 400 \mathrm{MHz}$, 298K.

Figure S16: Absorption Profile of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}$ in $\mathrm{CH}_{3} \mathrm{OH}$ (red line) and $\mathrm{H}_{2} \mathrm{O}$ (blue line), $10^{-5} \mathrm{M}, 298 \mathrm{~K}$.

Figure S17: Emission Profile of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}$ air-equilibrated (black line) and deoxygenated solution (blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{3} \mathrm{OH}, 298 \mathrm{~K}$.

Figure S18: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-}$ air-equilibrated (black line) and deoxygenated solution (blue line), $10^{-5} \mathrm{M}, \mathrm{H}_{2} \mathrm{O}, 298 \mathrm{~K}$.

Figure S19: Emission Map of $f a c-\left[\operatorname{Re}(C O)_{3}(B C S)(T p h)\right]^{2-}, 10^{-5} \mathrm{M}, \mathrm{H} 2 \mathrm{O}, 298 \mathrm{~K}$.

Figure S2O: Excitation Profile of fac-[Re(CO) $\left.\mathbf{3}_{3}(\mathrm{BCS})(\mathrm{Tph})\right]^{2-} \mathrm{CH}_{3} \mathrm{OH}$ (black line) $\mathrm{H}_{2} \mathrm{O}$ (blue line), 10^{-5} $\mathrm{M}, \mathrm{CH}_{3} \mathrm{OH}, 298 \mathrm{~K}$.

Figure S21: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C S)(T p h)\right]^{2-}, 10^{-5} \mathrm{M}, \mathrm{CH}_{3} \mathrm{OH}, 77 \mathrm{~K}$.

Figure S22: Absorption Profile of $\boldsymbol{f a c}-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathbf{B P S})(\mathbf{T p h})\right]^{2-}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (red line) and $\mathrm{H}_{2} \mathrm{O}$ (blue line), $10^{-5} \mathrm{M}, 298 \mathrm{~K}$.

Figure S23: Emission Profile of $f a c-\left[\operatorname{Re}\left(\mathrm{CO}_{3}(\mathrm{BPS})(\mathrm{Tph})\right]^{2-}\right.$ air-equilibrated (black line) and deoxygenated solution (blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S24: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B P S)(T p h)\right]^{2-}, 10^{-5} \mathrm{M}, \mathrm{H}_{2} \mathrm{O}, 298 \mathrm{~K}$.

Figure S25: Excitation Profile of fac-[Re(CO) $\left.\mathbf{3}^{(B P S)(T p h)}\right]^{2-} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black line) $\mathrm{H}_{2} \mathrm{O}$ (blue line), $10^{-5} \mathrm{M}$, $\mathrm{CH}_{3} \mathrm{OH}, 298 \mathrm{~K}$.

Figure S26: Emission Profile of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BPS})(\mathrm{Tph})\right]^{2-}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \mathrm{~K}$.

Figure S27: Absorption Profile of fac-[Re(CO) $\mathbf{3}_{\mathbf{(B C})(\mathrm{Tph})]} 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S28: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h)\right]$ air-equilibrated (black line) and deoxygenated solution (blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S29: Excitation Profile of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathrm{BC})(\mathrm{Tph})\right] 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S30: Emission Profile of $\boldsymbol{f a c}-\left[\operatorname{Re}(\mathbf{C O})_{3}(\mathbf{B C})(\mathrm{Tph})\right], \lambda_{\mathrm{exc}}=370 \mathrm{~nm}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S31: Emission Profile of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(B C)(T p h)\right], \lambda_{\text {exc }}=302 \mathrm{~nm}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S32: Emission Profile of $\mathrm{fac}-\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph})\right], 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \mathrm{~K}$.

Figure S34: Emission Profile of $f a c-\left[\operatorname{Re}\left(\mathrm{CO}_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}\right.$air-equilibrated (black line) and deoxygenated solution (blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S35: Excitation Profile of fac-[Re(CO) $\left.\mathbf{3}_{\mathbf{3}}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+} 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S36: Emission Profile of $f a c-\left[\operatorname{Re}(\mathbf{C O})_{3}(B C)(T p h-M e)\right]^{+}, \lambda_{\text {exc }}=370 \mathrm{~nm}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S37: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h-M e)\right]^{+}, \lambda_{\text {exc }}=302 \mathrm{~nm}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S38: Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h-M e)\right]^{+}\left(\lambda_{\text {exc }}=370 \mathrm{~nm}\right.$ blue line) and fac$\left[\operatorname{Re}(C O)_{3}(B C)(T p h-M e)\right]^{+}\left(\lambda_{\text {exc }}=302 \mathrm{~nm}\right.$ black line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S39: Emission Profile of $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}, 10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \mathrm{~K}$.

Figure S40: Excitation Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h)\right]$ (black line) and fac-[Re(CO) $\mathbf{3}_{\mathbf{~}}(\mathrm{BC})(\mathrm{Tph}-$ Me)] ${ }^{+}$(blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Figure S41: Normalized Emission Profile of $f a c-\left[\operatorname{Re}(C O)_{3}(B C)(T p h)\right]$ (black line) and fac-$\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{BC})(\mathrm{Tph}-\mathrm{Me})\right]^{+}$(blue line), $10^{-5} \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$.

Table S2 - Crystal data and collection details for fac-[Re(CO) $\mathbf{3}_{\mathbf{(B C})(\mathrm{Tph})] .}$

Formula	$\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}$
Fw	775.82
T, K	100(2)
λ, \AA	0.71073
Crystal system	Orthorhombic
Space Group	Pbca
a, \AA	10.9090(8)
b, \AA	22.6914(18)
c, Å	24.2243(19)
Cell Volume, \AA^{3}	5996.5(8)
Z	8
$\mathrm{D}_{\mathrm{c}}, \mathrm{g} \mathrm{cm}^{-3}$	1.719
μ, mm^{-1}	4.102
F(000)	3056
Crystal size, mm	$0.16 \times 0.13 \times 0.12$
θ limits, ${ }^{\circ}$	1.681-26.999
Index ranges	$\begin{aligned} & -13 \leq h \leq 13 \\ & -28 \leq k \leq 28 \\ & -30 \leq 1 \leq 30 \end{aligned}$
Reflections collected	81467
Independent reflections	6538 [$\mathrm{inint}=0.0493]$
Completeness to θ max	100.0\%
Data / restraints / parameters	6538 / 0 / 417
Goodness on fit on F^{2}	1.189
$\mathrm{R}_{1}(1>2 \sigma(1))$	0.0333
$w \mathrm{R}_{2}$ (all data)	0.0548
Largest diff. peak and hole, e \AA^{-3}	1.069 / -2.060

[^0]:

