Electronic Supplementary Information (ESI)

For

Cationic Organoiridium(III) Complex Based AIEgen for Selective Light up Detection of rRNA and Nucleolar Staining

Sanjoy Kumar Sheet,^a Bhaskar Sen,^a Kripamoy Aguan^b and Snehadrinarayan Khatua^{a*}

 ^aCentre for Advanced Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India. *Email: <u>snehadri@gmail.com</u>; <u>skhatua@nehu.ac.in</u>
 ^bDepartment of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya 793022, India.

Ta	ble of Contents	Page no
1	List of compounds	S2
2	NMR spectra of 2[PF ₆]	S3-S5
3	ESI-MS spectra of 2[PF ₆]	S5
4	CV of compound 2[PF ₆]	S 6
5	Theoretical UV-vis of 2	S 6
6	Solubility chart	S 7
7	Solvent dependent luminescence study	S7
8	PL spectra of complex in CH ₃ CN–PEG and THF–PEG mixture	S 8
9	UV spectra of complex in CH ₃ CN-water mixture	S 9
10	PL spectra of control probe 1[PF ₆] ₂ in CH ₃ CN–H ₂ O mixture	S 9
11	SEM image of $2[PF_6]$ (10 µM) in CH ₃ CN	S 10
12	PL titration of 2[PF ₆] with rRNA	S 10
13	PL spectra of 2 [PF ₆] in the presence anions and cations	S 11
14	PL spectra of 2 [PF ₆] in DNase and RNase free buffer	S12
15	Crystal structure of 2[PF6] from incomplete data set	S12
16	Computational studies	S13-S15
17	Molecular docking	S16-S17

Chart S1. List of Compounds used in this study

Figure S1. ¹H NMR of 2[PF₆] in acetone–*d*₆.

Figure S2. ¹H-¹H COSY NMR spectrum of $2[PF_6]$ in acetone– d_6 .

Figure S3. ¹³C NMR spectrum of $2[PF_6]$ in acetone– d_6 .

Figure S4. ¹H-¹³C HSQC spectrum of 2[PF₆] in acetone–*d*₆.

Figure S5. ¹H-¹³C HMBC spectrum of 2[PF₆] in acetone–*d*₆.

Figure S6. ESI-MS spectrum of $2[PF_6]$ in CH₃CN and isotopic distribution pattern. Colour code: black corresponds to experimentally obtained and red corresponds to theoretically calculated.

Figure S7. Cyclic voltammetric (CV) analysis of (a) $2[PF_6]$ (1.0 mM) and (b) $[Ir(ppy)_3]$ in dry and degassed acetonitrile solution versus the Fc/Fc⁺ couple.

Figure S8. Theoretical UV-vis spectrum of 2.

Chart S2. Solubility Chart

Solvents	Solubility		
	1[PF ₆] ₂	2[PF ₆]	
Hexane	×	×	
Dichloromethane	\checkmark	\checkmark	
Chloroform	×	\checkmark	
MeOH	\checkmark	\checkmark	
Acetone	\checkmark	\checkmark	
Acetonitrile	\checkmark	\checkmark	
THF	\checkmark	\checkmark	
DMSO	\checkmark	\checkmark	
Water*	×	×	

*It is notable that the compound is insoluble in water at high concentration of the probe but at 10 μ M concentration both the compounds have better solubility even in 99% water (CH₃CN or DMSO as a co solvent).

Figure S9. PL spectra of 2[PF₆] in different solvents.

Figure S10. PL spectra of **2**[**PF**₆] (10 μ M) in CH₃CN–PEG mixture, (inset) Plot of PL intensity vs. different fraction of PEG in CH₃CN. ($\lambda_{ex} = 384 \text{ nm}$; $\lambda_{em} = 480 \text{ and } 510$).

Figure S11. PL spectra of **2**[**PF**₆] (10 μ M) in THF–PEG mixture, (*inset*) Plot of PL intensity vs. different fraction of PEG in THF. ($\lambda_{ex} = 384 \text{ nm}$; $\lambda_{em} = 480 \text{ and } 508$).

Figure S12. Absorption spectra of $2[PF_6]$ in CH₃CN/H₂O mixtures with different H₂O fraction (0-90%).

Figure S13. PL spectra of $1[PF_6]_2$ (10 µM) in CH₃CN–H₂O mixture ($\lambda_{ex} = 459$ nm; $\lambda_{em} = 577$ nm).

Figure S14. SEM image of $2[PF_6]$ (10 μ M) in CH₃CN.

Figure S15. PL titration of **2**[**PF**₆] with rRNA (0-4 fold) in CH₃CN/PBS buffer (1:99; v/v, pH 7.4). (*Inset*) Plot of emission intensity as a function of [RNA].

Figure S16. Emission spectra of 2[PF₆] in the presence of several anions in CH₃CN.

Figure S17. Emission spectra of **2**[**PF**₆] with several cations in 50% aqueous carbonate buffer (pH 9.2)

Figure S18. PL titration of $2[PF_6]$ with gradual addition of DNase and RNase free aqueous buffer (0-4 fold).

Figure S19. Ball stick packing representation of partially solved crystal structure of 2[PF₆].

Table S1. Selected bond lengths and angles in the optimized structure.

Bond lengths (Å)				
N(17)-Ir(71)	2.08370	N(61)-Ir(71)	2.20668	
C(72)-Ir(71)	2.01863	N(73)-Ir(71)	2.08102	
N(60)-Ir(71)	2.26676	C(74)-Ir(71)	2.01809	
Bond angles (°)				
N(17)-Ir(71)-C(72)	80.15564	N(61)-Ir(71)-N(73)	96.59987	
N(60)-Ir(71)-N(61)	74.23891	N(61)-Ir(71)-C(72)	98.99612	
N(73)-Ir(71)-C(74)	80.14838	C(72)-Ir(71)-N(73)	95.22523	
N(17)-Ir(71)-N(60)	96.57373	C(72)-Ir(71)-C(74)	90.39341	
N(17)-Ir(71)-N(61)	88.56240	N(17)-Ir(71)-N(73)	173.58341	
N(17)-Ir(71)-C(74)	95.35121	N(60)-Ir(71)-C(72)	172.64396	
N(60)-Ir(71)-N(73)	88.51983	N(61)-Ir(71)-C(74)	170.33257	
N(60)-Ir(71)-C(74)	96.49361			

Table S2. The x,y,z Cartesian coordinates of the complex **2** calculated using Gaussian09 at B3LYP/6-31G(d,p) level and LANL2DZ for iridium.

		2	
С	2.30990900 1.92082500 -2.26060200	С	-0.14586400 -4.11148400 2.41063700
Н	2.65655700 1.05153100 -2.81000800	Н	-0.51615100 -5.00881200 2.89580300
С	2.42972900 3.17958200 -2.85271000	С	-0.96906300 -3.38777300 1.55238700
Н	2.86376500 3.26689400 -3.84523300	Н	-1.98616800 -3.70826800 1.35434300
С	2.00257400 4.32916300 -2.17963100	С	-0.46647300 -2.23621300 0.94021300
Н	2.10028000 5.30566400 -2.64314900	С	-1.24413100 -1.41061500 0.01930500
С	-0.17203900 3.42197900 3.14756900	С	-2.54674700 -1.45537700 -0.44193500
Н	-0.51825500 4.20240100 3.81796800	Н	-3.40191500 -2.08596000 -0.24989800
С	-0.21621000 2.07932600 3.53667800	С	-3.78025300 0.02536100 -2.10903800
Н	-0.59158600 1.77885600 4.50808000	Н	-3.82742700 -0.64144600 -2.97654400
С	0.24188700 1.12147100 2.64608500	Н	-3.53980600 1.02917100 -2.46242600
Н	0.23889900 0.06809700 2.89748700	С	-5.07780100 -0.01501400 -1.35676900
С	1.45695800 4.21147600 -0.90755500	С	-6.76194300 -0.69175000 -0.21375400
С	1.33495800 2.94644700 -0.30694600	С	-7.69174900 -1.42549000 0.53595400
С	0.32493700 3.74794100 1.89456600	Н	-7.50088300 -2.46374900 0.78611100
С	0.77893500 2.74158200 1.02683600	С	-8.85572500 -0.78005100 0.93341500
Ν	0.72530400 1.43390500 1.42695300	Н	-9.59706200 -1.32189000 1.51207500
С	3.85726500 0.76689200 1.81847200	С	-9.10251800 0.56889600 0.59872100
Н	3.21009500 1.40983200 2.40678600	Н	-10.02592300 1.03472400 0.92799000
С	5.19803600 0.64245200 2.19033000	С	-8.19463400 1.31558400 -0.14457300
Н	5.56779800 1.18377800 3.05707600	Н	-8.39010300 2.35177100 -0.40157400
С	6.07023100 -0.16659900 1.45457300	С	-7.02618000 0.65956500 -0.53980400
Н	7.11164500 -0.25874600 1.74581300	Ν	0.80243800 -1.80434900 1.16324000
С	3.70286900 -2.79118100 -3.18083600	Ν	-0.64572300 -0.32764200 -0.57251300
Н	4.24180900 -3.42161800 -3.88103100	Ν	-1.48573300 0.28939700 -1.35827200
С	2.33994000 -2.53465600 -3.35823300	Ν	-2.64110100 -0.39178500 -1.27657400
Н	1.78589600 -2.94901300 -4.19258200	Ν	-5.53877600 -1.08058500 -0.74659600
С	1.69726500 -1.72207200 -2.43715700	Ν	-5.91969900 1.06764700 -1.27015300

Н	0.64651500 -1.47749700 -2.53125400	Н	-5.77037200 1.98114400 -1.67191800
С	5.59363000 -0.84917200 0.34159100	Н	5.42194500 -2.40235000 -1.95382100
С	4.24547200 -0.72637100 -0.03640900	Н	6.27494200 -1.47382100 -0.22877800
С	4.36386800 -2.22325400 -2.10109800	Н	1.12942800 5.10635100 -0.38636300
С	3.67066100 -1.40379400 -1.19728600	Н	0.37228600 4.78302600 1.57902000
С	1.59169500 -2.51111300 1.99054200	Ir	1.44017000 0.05643200 0.03663500
Н	2.59403200 -2.12039800 2.13039200	С	1.75602500 1.77039600 -0.98191700
С	1.15781800 -3.66697300 2.63383600	Ν	2.33444400 -1.17504800 -1.38281600
Н	1.83207800 -4.20163900 3.29340900	С	3.34442000 0.08599800 0.70428000

Table S3. The x,y,z Cartesian coordinates of the complex 2 dimer calculated usingGaussian09 at WB97XD/6-31G(d,p) level and LANL2DZ for iridium.

	2-I	Dimer	
Ir	6.89130100 0.01704200 -0.01103500	С	-6.16838700 -1.89761400 2.42552400
С	9.27177900 -3.18451900 -1.71991200	Ν	-3.92568800 2.91219800 1.06593400
Ν	0.66706300 -1.17811000 -2.59798000	С	-5.41811900 -0.40446200 -2.66864000
С	6.92769300 1.12566600 -1.68014800	С	-7.13881700 3.89758000 -1.85285000
С	10.75521400 -1.65506000 -0.62150900	С	-5.05123600 -2.37997100 0.35350700
С	3.89581900 3.62926300 1.11817300	С	-9.44968800 -1.20885600 0.33932100
С	8.47714400 2.23642900 1.40115900	С	-9.33991000 -0.25456400 1.44493900
С	8.22305800 -2.37704700 -1.32754200	С	-8.27621900 3.86150700 -2.65108200
С	5.32414100 2.44277900 -0.42035200	С	-9.49506000 -2.98558400 -1.78682900
Ν	5.54636600 1.49296400 0.52697200	С	-8.34625700 -2.24220800 -1.52977700
С	9.66123400 2.77943900 1.89183700	С	0.27526800 1.85875700 0.52788500
С	-0.39079400 -1.60047000 -0.70521300	С	2.21917200 0.57341300 0.12569600
С	4.85835400 -2.17806500 0.42883500	С	-9.02730600 2.69278600 -2.70365200
С	4.14683500 2.65223200 2.07783900	Ν	-8.15576800 0.40929000 1.50133700
Ν	4.52961200 -1.47232700 -1.61851600	С	-4.36996500 -3.44147500 0.95956000
Ν	0.70981300 -2.44121500 -0.75042800	С	-10.31907700 -0.00719700 2.41073600
С	10.87791800 2.12726200 1.69592200	С	-5.49129400 -2.95343800 3.02714000
С	2.60380900 -2.76288200 -2.29354600	С	2.07558700 -0.02710600 1.39188200
С	6.05321000 2.23449500 -1.67114600	С	-4.66162100 3.58882000 0.15399300
С	7.30411400 -1.19361100 2.90397800	С	-5.63177400 2.69456200 -0.23722000
С	3.79795100 -2.89676100 -0.07323200	С	1.03850500 0.31280200 2.24103200
С	10.90424000 0.92868000 0.99925900	С	-8.29654700 -1.33399300 -0.46746100
С	-2.32880400 -0.47908600 0.10575200	С	-4.58981000 -3.72902500 2.29718900
С	7.06186300 -2.01514500 3.99687600	Ν	-0.79070700 2.72849700 0.41440400
С	4.97584600 1.60174000 1.73765500	С	-4.85045400 -1.98767200 -1.03945500
С	5.27367800 -3.02255700 2.75871800	С	1.32521100 1.52748200 -0.32946300
С	6.02826900 -2.94232300 3.92311100	С	0.12221200 1.27081400 1.79618300
С	-2.37219400 0.29876800 -1.06600200	Ν	-7.51666000 1.62461500 -1.19166600
С	5.92949300 3.07134700 -2.78631000	Ν	-5.53357200 -0.87560900 -1.41521400
С	9.65870800 -0.87220200 -0.24961700	Ν	-5.40596100 1.54340600 0.45933000
С	4.48393000 3.52119800 -0.12971600	С	-5.96194500 -1.58246600 1.07923100
С	9.71526700 0.38246300 0.50386900	С	-2.77202500 3.37688600 1.84593300
С	6.68004200 2.82206800 -3.92434300	С	-10.62766600 -2.84333800 -0.98671100
С	1.30417700 -2.14728500 -1.87169200	С	-8.85443500 1.56706800 3.46989600
С	7.55896400 1.73837600 -3.94295100	С	-4.62089400 -1.00971600 -3.61808600
Ν	5.25657200 -1.32091700 -0.55423700	С	-3.91561100 -2.15703700 -3.25352100
С	-1.43622800 0.15113300 -2.07770500	Н	9.07947700 -4.07845100 -2.30019400
Ν	3.64950100 -2.43099500 -1.33121800	Н	0.97584700 -0.78585400 -3.47237200
С	-1.35264800 -1.44113600 0.29481500	Η	11.75446100 -1.34615900 -0.34159200
Ν	6.57575400 -1.26264100 1.78214500	Н	3.25188800 4.47148700 1.34762700
С	5.57686000 -2.16911300 1.70410300	Н	7.19864200 -2.60387500 -1.59628700
Ν	8.40584700 -1.25620100 -0.60918700	Η	9.63777400 3.72320100 2.42838800

С	8.47198300 1.02472100 0.70219300	Η	3.70337100 2.69372400 3.06447400
С	-0.44113100 -0.80196100 -1.86396800	Η	11.79745200 2.55467300 2.08022700
С	10.56506700 -2.81268200 -1.35501300	Η	2.51278600 -3.84989800 -2.33804600
С	7.68157200 0.90451800 -2.83658200	Η	2.94660200 -2.39676800 -3.26198000
Ir	-6.79855000 -0.09507400 0.02473500	Η	8.09361600 -0.44895800 2.90505000
С	-10.08029900 0.90456400 3.42357000	Н	3.13308300 -3.63611700 0.34327200
С	-10.60384900 -1.95504700 0.07796100	Н	11.85534200 0.42796300 0.84631000
С	-4.03249000 -2.64277600 -1.96569500	Н	-3.08022800 -0.32631000 0.87052200
С	-7.92208400 1.28865300 2.49042400	Н	7.67583900 -1.92470600 4.88477800
С	-1.52334400 2.60134800 1.56952000	Η	5.20925800 0.81432000 2.44382600
С	-8.61386100 1.59604600 -1.95928100	Η	4.46742200 -3.74153400 2.66638600
Ν	-4.38837300 1.67922600 1.25242600	Н	5.81333900 -3.59888700 4.75901500
С	-6.78900000 2.76132900 -1.13258000	Н	-3.17299400 1.02297300 -1.18717700
Ν	-1.01037700 1.76082100 2.42215200	Н	5.25323300 3.92129500 -2.77414100
Н	4.31710700 4.28360700 -0.88046500	Н	3.05853600 0.29730100 -0.50375400
Н	6.59253600 3.47138400 -4.78872900	Н	-9.92338000 2.62482700 -3.30862700
Н	8.15634600 1.54735600 -4.82944900	Η	-3.66485100 -4.04477000 0.39572100
Н	-1.47702700 0.74570700 -2.98469000	Н	-11.26103600 -0.53914600 2.36805100
Н	-1.32271800 -2.04370400 1.19523800	Н	-5.66867300 -3.17769900 4.07465400
Н	11.41569600 -3.41885800 -1.64749200	Н	2.80199500 -0.76828100 1.70667000
Н	8.38054000 0.07471600 -2.87886900	Η	-4.45807100 4.61345100 -0.11345100
Н	-10.83752100 1.09409100 4.17664500	Н	0.91747400 -0.14692600 3.21536400
Н	-11.48892100 -1.85065500 0.69787900	Н	-4.06992800 -4.55509700 2.77028600
Н	-3.49187400 -3.53092800 -1.66514400	Н	-1.04676400 3.24783100 -0.40829600
Н	-6.94564800 1.75695300 2.48607300	Н	1.44172100 1.98949100 -1.30381900
Н	-9.15816700 0.65714900 -1.96514500	Н	-3.00583000 3.25447800 2.90360100
Н	-6.86580400 -1.31571100 3.02006200	Н	-2.65261500 4.44072500 1.62718800
Н	-6.00280200 0.47821500 -2.89888300	Н	-11.52092500 -3.42319700 -1.19112400
Н	-6.53776200 4.79738800 -1.78445400	Н	-8.62201500 2.28013200 4.25108900
Н	-8.57296500 4.73611500 -3.21942400	Н	-4.56371100 -0.59806200 -4.61828800
Н	-9.50756900 -3.68675600 -2.61580900	Н	-3.28470000 -2.66778000 -3.97300700
Н	-7.48078300 -2.38097700 -2.17025700	Н	7.54807500 2.77371500 1.56539000

Molecular Docking Study

To check the interaction between $2[PF_6]$ and ribosomal RNA, in silico docking study was executed using Autodock Tools. The docking study was operated by energy minimised structure of $2[PF_6]$ and rRNA (PDB code: 1C2X). The lowest energy-ranked results of nine $2[PF_6]$ were listed in Table S4. The docked conformations with minimum binding energy were chosen for further analysis (see Fig. S20). For docking study, a grid size $70\text{Å} \times 126\text{Å} \times 52 \text{Å}$ with a grid coordinates $28.006 \times 81.763 \times 24.496$ were taken around the active site. It is clearly observed that $2[PF_6]$ interact with cytosine-70, cytosine-71, guanine-13, adenine-66 nucleosides by weak supramolecular interactions such as, N-H^{....} π and π - π interactions between benzimidazole ring of $2[PF_6]$ and purine, pyrimidine bases of the nucleosides.

Table S4. Docking summary of rRNA with **2**[**PF**₆] by Autodock program generating different conformations applying Lamarckian GA.

Rank	Binding Energy (kcal/mol)
1	-11.3
2	-11.0
3	-10.6
4	-10.0
5	-9.9
6	-9.6
7	-9.5
8	-9.3
9	-9.2

Figure S20. View of the interactions of $2[PF_6]$ with nearby pyrimidine and purine bases of rRNA in docked structure.