Supplementary data

Fabrication of novel few-layer WS₂/Bi₂MoO₆ plate-on-plate

heterojunction structure with enhanced visible-light photocatalytic

activity

Xiang Li*, Mengyuan Su, Guifen Zhu, Kaige Zhang, Xia Zhang, Jing Fan*

School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China

*Address correspondence at: School of Environment, Henan Normal University, Xinxiang, Henan 453007, P. R. China Tel: +86-373-3325719 Fax: +86-373-3325719 E-mail: <u>xli2011@163.com</u> (X. Li); <u>fanjing@htu.cn</u> (J. Fan)

Fig. S1 (a) TEM and (b) the selected area electron diffraction (SAED) pattern of a few layers of WS_2 nanosheets. Inset: HRTEM image of a few layers of WS_2 nanosheets.

Fig. S2 The photographs of a few layers of WS_2 nanosheets (a) and bulk WS_2 (b) in the ethanol/water mixtures with ethanol volume fractions of 35% after being stored for 20 days.

Fig. S3 zeta potential of a few layers of WS_2 nanosheets measured in ethanol solution with adjusted pH range.

Fig. S4 Energy dispersive X-ray spectroscopy (EDS) distribution maps of sample: (ae) EDS elemental mapping and (f) EDS spectrum of the hierarchical WS₂/Bi₂MoO₆ composite (5 wt% of WS₂).

Fig. S5 Raman spectrum of the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2). Inset: Raman spectra of the a few layers of WS_2 nanosheets and bulk WS_2 .

Fig. S6 FT-IR spectra of the pure Bi_2MoO_6 , WS_2 and the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2).

Fig. S7 N_2 adsorption-desorption isotherms of Bi_2MoO_6 and the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2); the inset is the corresponding pore size distributions.

Fig. S8 XPS valence band (VB) spectra of WS_2 and Bi_2MoO_6 .

Fig. S9 The SEM micrograph of the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2) after the recycle experiments.

Fig. S10 The XRD patterns of the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2) before and after photocatalytic reaction.

Fig. S11 The high-resolution XPS spectra of S 2p for the hierarchical WS_2/Bi_2MoO_6 composite (5 wt% of WS_2) before and after photocatalytic reaction.

Table S1 The first-order rate constants for RhB degradation with as-synthesized

 samples under visible light irradiation.

Photocatalysts Rate constant (min⁻ Correlation coefficient

	1)	(R^2)
Blank	0.0005	0.9202
WS_2	0.0036	0.9939
Bi ₂ MoO ₆	0.0081	0.9994
1 wt% WS ₂ /Bi ₂ MoO ₆	0.0103	0.9978
3 wt% WS ₂ /Bi ₂ MoO ₆	0.0157	0.9845
5 wt% WS ₂ /Bi ₂ MoO ₆	0.0367	0.9745
7 wt% WS ₂ /Bi ₂ MoO ₆	0.0087	0.9975
Physical mixure of	0.0098	0.9991
Bi ₂ MoO ₆ and WS ₂		