Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Computational Details:

<u>Ab initio</u> calculations: All the first principle calculations have been performed in ORCA 3.0.3 programme package. To get the starting orbitals, DFT (Density Functional Theory) has been performed with ROKS/BP86method with def2-TZVP basis set on Fe, S and def2-TZVP(-f) basis set for C. In the configuration interaction (CI) step, state averaged complete active space self-consistent field (SA-CASSCF) have been carried out with 5 quintets and 45 triplets considering 6 active metal electrons in 5 metal d-orbitals. Along with this, calculations were also computed with considering 22 singlets to see whether this effects to the energy levels or not. To account for the dynamic correlation N-electron valence perturbation theory (NEVPT2) was performed on the top of CASSCF wavefunction. Relativistic effects were taken into account with considering zeroth-order regular approximation (ZORA) method which was used both in the Hamiltonian as well as in basis functions. Spin orbit interactions were accounted with quasi-degenerate perturbation theory (QDPT) as implemented in ORCA. No geometry optimization was performed as we found that gas phase as well as solvent phase optimization leads to significant distortion of the molecular geometry.

For example, optimization of complex 1 leads to loss of planarity as well as lose of bond angles and dihedral angles from the original X-Ray structures. It shows D and E/D values of ± 5 cm⁻¹ and 0.32 respectively.

<u>DFT calculations</u>: To calculate the Mössbauer properties we employed DFT to determine the parameters such as isomer shift (δ) and quadruple splitting (ΔE_Q) in ORCA 3.0.3. For this B3LYP functional with TZVP basis set was used and particularly for Fe, CP(PPP) (core properties basis set) was used. Also COSMO (Methanol) keywords were used to incorporate the solvent effect. Mossbauer parameters are calculated using the linear equation $\delta = \alpha(\rho - c) +\beta$.¹The wave function for use in quantum theory of atoms in molecules (QTAIM) analysis were generated from single point calculation using hybrid B3LYP functional with TZV Ahlrichs triple- ζ basis set as implemented in the Gaussian 09 suite (Revision A.02) of programs.² Further, the quantum theory of atoms in molecule (QTAIM) was applied to depict the topological properties of the chosen complexes. To better understand the nature of the coordination of the complexes to explain the variation of E/D and consistency of D values we have used the Baders Atoms in Molecules theory.³ In this theory, Bader and co-workers characterizes bonding and non-bonding interactions of atoms in terms of topological

properties such as electron density $\rho(\mathbf{r})$, Laplacian of the electron density L(r), potential energy density V(r), kinetic energy density G(r), total energy density H(r) and a potential energy to the Lagrangian kinetic energy ratio ($|V(\mathbf{r})/G(\mathbf{r})||$. For instance, the presence of a (3, -1) critical point in QTAIM topography represents a chemical bond between two atoms and are called as the bond critical points (BCPs) where the shared electron density reaches a minimum, whereas a critical point with (3, +1) and (3, +3) signatures identify a ring structure (RCP) and cage critical point (CCP) in the molecular system. The $\rho(\mathbf{r})$ values at the BCPs are related to the strength of the bonds.⁴ In this study, QTAIM calculations are performed at B3LYP/TZV level using AIM2000 package.⁵

Dihedral angle (θ_d)	Tetrahedron	Square Planar
89.98°	2.065	27.838
81.38°	2.073	23.632
72.41°	3.513	18.821
59.9°	6.097	13.275
49.8°	9.143	9.362
39.7°	12.948	6.063
30.7°	16.952	3.674
20.8°	21.895	1.744
11.0°	27.305	0.559
2.6°	33.123	0.139

Table S1: Continuous shape analysis (CShMs).6

Table S2. Topological parameters at BCPs in the Fe–S bonds of the chosen complexes. Al	Il parameters are in a.u. $\rho(r)$ in units of eÅ ⁻³ , G(r), V(r),
H(r) in units of a.u.	

Dihedral				Fe-S ₁ bor	nds			Fe–S ₂ bonds						
(θ_d)	$\rho(\mathbf{r})$	$\nabla_{\rho(r)}^{2}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)
89.98°	0.0642	0.0412	-0.0161	0.0573	0.1670	0.0734	1.2812	0.0643	0.0406	-0.0163	0.0569	0.1507	0.0733	1.2870
81.38°	0.0644	0.0403	-0.0164	0.0567	0.1489	0.0730	1.2891	0.0663	0.0418	-0.0174	0.0592	0.1483	0.0765	1.2934
72.41°	0.0654	0.0417	-0.0168	0.0585	0.1752	0.0753	1.2875	0.0648	0.0408	-0.0167	0.0575	0.1544	0.0743	1.2904
80.00°	0.0641	0.0408	-0.0162	0.0570	0.1684	0.0732	1.2840	0.0642	0.0409	-0.0162	0.0571	0.1680	0.0734	1.2839
69.90°	0.0643	0.0405	-0.0164	0.0569	0.1578	0.0732	1.2880	0.0645	0.0404	-0.0165	0.0569	0.1465	0.0734	1.2901
59.90°	0.0647	0.0396	-0.0167	0.0564	0.1295	0.0731	1.2968	0.0650	0.0394	-0.0170	0.0564	0.1086	0.0733	1.3010
49.80°	0.0654	0.0384	-0.0173	0.0557	0.0903	0.0729	1.3101	0.0657	0.0380	-0.0176	0.0556	0.0640	0.0732	1.3158
39.70°	0.0662	0.0370	-0.0179	0.0549	0.0601	0.0728	1.3260	0.0665	0.0366	-0.0182	0.0548	0.0337	0.0730	1.3323
30.70°	0.0682	0.0318	-0.0196	0.0514	0.3236	0.0710	1.3813	0.0682	0.0323	-0.0197	0.0520	0.3467	0.0718	1.3808
20.80°	0.0686	0.0312	-0.0200	0.0512	0.4670	0.0712	1.3906	0.0685	0.0310	-0.0200	0.0510	0.4554	0.0710	1.3922
11.00°	0.0684	0.0322	-0.0201	0.0523	0.3874	0.0724	1.3843	0.0679	0.0333	-0.0199	0.0532	0.3027	0.07311	1.3742
2.6°	0.0684	0.0326	-0.0202	0.0528	0.3468	0.0730	1.3826	0.0683	0.0324	-0.0201	0.0525	0.3368	0.0727	1.3848
62.70°	0.0646	0.0399	-0.0166	0.0565	0.1388	0.0731	1.2937	0.0649	0.0398	-0.0168	0.0566	0.1211	0.0735	1.2975
64.70°	0.0645	0.0401	-0.0165	0.0566	0.1448	0.0732	1.2920	0.0647	0.0399	-0.0167	0.0566	0.1288	0.0733	1.2950
67.40°	0.0644	0.0403	-0.0164	0.0568	0.1521	0.0732	1.2898	0.0645	0.0401	-0.0165	0.0567	0.1384	0.0732	1.2921
				Fe-S ₃ bo	nds			Fe–S ₄ bonds						
	$\rho(\mathbf{r})$	$\nabla_{ ho(r)}^{2}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)
89.98°	0.0642	0.0409	-0.0162	0.0571	0.1664	0.0733	1.2840	0.0641	0.0411	-0.0161	0.0572	0.1759	0.0733	1.2816
81.38°	0.0660	0.0426	-0.0172	0.0598	0.1893	0.0770	1.2874	0.0651	0.0423	-0.0166	0.0589	0.2061	0.0756	1.2819
72.41°	0.0638	0.0393	-0.0163	0.0556	0.1215	0.0719	1.2930	0.0653	0.0411	-0.0167	0.0578	0.1469	0.0746	1.2890
80.00°	0.0643	0.0405	-0.0164	0.0569	0.1489	0.0733	1.2881	0.0643	0.0411	-0.0162	0.0572	0.1626	0.0734	1.2825
69.90°	0.0646	0.0400	-0.0166	0.0567	0.1342	0.0733	1.2934	0.0645	0.0407	-0.0164	0.0570	0.1477	0.0734	1.2874
59.90°	0.0651	0.0391	-0.0170	0.0562	0.1018	0.0732	1.3034	0.0650	0.0398	-0.0168	0.0566	0.1195	0.0734	1.2968
49.80°	0.0657	0.0379	-0.0176	0.0554	0.0605	0.0730	1.3172	0.0656	0.0385	-0.0173	0.0559	0.0865	0.0732	1.3102
39.70°	0.0665	0.0364	-0.0182	0.0546	0.0292	0.0728	1.3331	0.0664	0.0371	-0.0180	0.0551	0.0629	0.0730	1.3262
30.70°	0.0676	0.0329	-0.0196	0.0524	0.3153	0.0720	1.3740	0.0677	0.0327	-0.0194	0.0521	0.3387	0.0715	1.3723
20.80°	0.0671	0.0353	-0.0194	0.0547	0.2390	0.0740	1.3528	0.0669	0.0354	-0.0193	0.0547	0.2299	0.0740	1.3528
11.00°	0.0676	0.0339	-0.0198	0.0536	0.3052	0.0734	1.3694	0.0683	0.0323	-0.0200	0.0523	0.3702	0.0724	1.3843

2.6°	0.0679	0.0334	-0.0199	0.0533	0.3380	0.0732	1.3734	0.0681	0.0332	-0.0200	0.0532	0.3380	0.0733	1.3778
62.70°	0.0649	0.0398	-0.0168	0.0566	0.1211	0.0735	1.2975	0.0649	0.0394	-0.0169	0.0563	0.1127	0.0732	1.3000
64.70°	0.0648	0.0396	-0.0168	0.0564	0.1200	0.0732	1.2978	0.0648	0.0403	-0.0166	0.0568	0.1344	0.0734	1.2918
67.40°	0.0647	0.0398	-0.0167	0.0566	0.1274	0.0733	1.2954	0.0646	0.0405	-0.0165	0.0569	0.1412	0.0734	1.2895

Table S3. Topological parameters at BCPs in the Fe–S bonds of the chosen complexes. All parameters are in a.u. $\rho(r)$ in units of eÅ-³, G(r), V(r), H(r) in units of a.u. (d = Avg. Fe-S bond length in Å)

				Fe–S ₁ bor	nds			Fe–S ₂ bonds						
	$\rho(\mathbf{r})$	$\nabla^{2}_{\rho(r)}$	H(r)	G(r)	3	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^{2}_{\rho(r)}$	H(r)	G(r)	3	V(r)	V(r) /G(r)
$\theta_d = 90,$ d = 2.40	0.0585	0.0370	-0.0133	0.0503	0.1812	0.0636	1.2644	0.0586	0.0365	-0.0135	0.0500	0.1646	0.0635	1.2700
$\theta_d = 90,$ d = 2.45	0.0534	0.0332	-0.0109	0.0441	0.1939	0.0551	1.2482	0.0534	0.0327	-0.0111	0.0438	0.1773	0.0550	1.2538
$\theta_d = 90,$ d = 2.30	0.0706	0.0459	-0.0194	0.0653	0.1526	0.0847	1.2978	0.0706	0.0452	-0.0197	0.0649	0.1368	0.0846	1.3036
$\theta_d = 90,$ d = 2.25	0.0776	0.0510	-0.0234	0.0744	0.1361	0.0978	1.3147	0.0776	0.0502	-0.0237	0.0739	0.1211	0.0976	1.3204
$\theta_d = 30,$ d = 2.40	0.0590	0.0383	-0.0144	0.0528	0.3173	0.0672	1.2737	0.0588	0.0382	-0.0142	0.0524	0.2812	0.0666	1.2712
$\theta_d = 30,$ d = 2.45	0.0560	0.0282	-0.0129	0.0411	0.0508	0.0540	1.3140	0.0558	0.0284	-0.0127	0.0411	0.0640	0.0538	1.3086
$\theta_d = 30, \\ d = 2.30$	0.0731	0.0419	-0.0221	0.0641	0.1322	0.0862	1.3455	0.0725	0.0421	-0.0216	0.0637	0.1567	0.0853	1.3394
$\theta_d = 30,$ d = 2.25	0.0788	0.0522	-0.0254	0.0776	0.2609	0.1030	1.3276	0.0782	0.0523	-0.0248	0.0771	0.2553	0.1020	1.3220
$\theta_d = 40, \\ d = 2.40$	0.0589	0.0380	-0.0142	0.0522	0.3339	0.0664	1.2718	0.0586	0.0377	-0.0140	0.0517	0.2782	0.0656	1.2702
$\theta_d = 40,$ d = 2.45	0.0536	0.0343	-0.0117	0.0460	0.3547	0.0576	1.2536	0.0534	0.0339	-0.0115	0.0454	0.2739	0.0569	1.2533
$\theta_d = 40,$ d = 2.30	0.0726	0.0420	-0.0217	0.0637	0.0481	0.0853	1.3403	0.0722	0.0423	-0.0213	0.0636	0.0712	0.0848	1.3343

$\theta_d = 40,$ d = 2.25	0.0781	0.0531	-0.0247	0.0778	0.2762	0.1025	1.3176	0.0775	0.0531	-0.0240	0.0771	0.2417	0.1012	1.3115
$\theta_d = 50,$ d = 2.40	0.0601	0.0336	-0.0146	0.0482	0.0548	0.0629	1.3035	0.0598	0.0339	-0.0144	0.0483	0.0835	0.0627	1.2976
$\theta_d = 50,$ d = 2.45	0.0535	0.0337	-0.0115	0.0451	0.3766	0.0566	1.2540	0.0534	0.0330	-0.0114	0.0444	0.2928	0.0557	1.2558
$\theta_d = 50,$ d = 2.30	0.0717	0.0440	-0.0208	0.0648	0.1092	0.0857	1.3213	0.0713	0.0442	-0.0205	0.0647	0.1213	0.0852	1.3167
$\theta_d = 50,$ d = 2.25	0.0780	0.0518	-0.0244	0.0763	0.2061	0.1007	1.3205	0.0777	0.0516	-0.0241	0.0757	0.1747	0.0998	1.3180
$\theta_d = 60, \\ d = 2.40$	0.0594	0.0348	-0.0141	0.0489	0.0913	0.0630	1.2891	0.0592	0.0351	-0.0139	0.0490	0.1194	0.0629	1.2844
$\theta_d = 60, \\ d = 2.45$	0.0543	0.0308	-0.0117	0.0426	0.0852	0.0543	1.2751	0.0541	0.0311	-0.0115	0.0427	0.1158	0.0542	1.2702
$\theta_d = 60, \\ d = 2.30$	0.0711	0.0451	-0.0202	0.0653	0.1456	0.0855	1.3095	0.0708	0.0452	-0.0200	0.0651	0.1476	0.0851	1.3065
$\theta_d = 60,$ d = 2.25	0.0778	0.0512	-0.0241	0.0753	0.1727	0.0994	1.3199	0.0776	0.0510	-0.0238	0.0749	0.1519	0.0987	1.3180
$\theta_d = 70,$ d = 2.40	0.0589	0.0358	-0.0137	0.0495	0.1336	0.0632	1.2771	0.0587	0.0360	-0.0136	0.0496	0.1563	0.0632	1.2742
$\theta_d = 70,$ d = 2.45	0.0538	0.0318	-0.0113	0.0432	0.1259	0.0545	1.2630	0.0536	0.0320	-0.0112	0.0433	0.1549	0.0545	1.2598
$\theta_d = 70, \\ d = 2.30$	0.0707	0.0455	-0.0198	0.0653	0.1569	0.0851	1.3033	0.0705	0.0454	-0.0197	0.0651	0.1533	0.0848	1.3020
$\theta_d = 70,$ d = 2.25	0.0776	0.0510	-0.0237	0.0747	0.1580	0.0985	1.3177	0.0774	0.0508	-0.0236	0.0744	0.1421	0.0980	1.3170
$\theta_d = 80,$ d = 2.40	0.0585	0.0366	-0.0134	0.0500	0.1703	0.0634	1.2686	0.0585	0.0366	-0.0134	0.0500	0.1799	0.0634	1.2682
$\theta_d = 80,$ d = 2.45	0.0534	0.0326	-0.0111	0.0437	0.1692	0.0548	1.2535	0.0533	0.0327	-0.0111	0.0437	0.1880	0.0548	1.2527
$\theta_d = 80,$ d = 2.30	0.0705	0.0457	-0.0195	0.0652	0.1605	0.0848	1.2996	0.0704	0.0455	-0.0195	0.0650	0.1536	0.0846	1.3002
$\theta_d = 80$,	0.0775	0.0509	-0.0235	0.0744	0.1499	0.0979	1.3158	0.0774	0.0507	-0.0235	0.0741	0.1376	0.0976	1.3166

d = 2.25														
				Fe-S ₃ bo	nds						Fe-S ₄ bor	nds		
	$\rho(\mathbf{r})$	$\nabla_{\rho(r)}^{2}$	H(r)	G(r)	3	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	3	V(r)	V(r) /G(r)
$\theta_d = 90,$ d = 2.40	0.0584	0.0366	-0.0134	0.0500	0.1792	0.0634	1.2680	0.0584	0.0369	-0.0133	0.0502	0.1891	0.0635	1.2651
$\theta_d = 90,$ d = 2.45	0.0533	0.0329	-0.0110	0.0439	0.1918	0.0549	1.2510	0.0532	0.0331	-0.0109	0.0440	0.2022	0.0550	1.2486
$\theta_d = 90,$ d = 2.30	0.0704	0.0455	-0.0195	0.0650	0.1519	0.0845	1.3005	0.0704	0.0457	-0.0194	0.0652	0.1610	0.0846	1.2981
$\theta_d = 90,$ d = 2.25	0.0774	0.0506	-0.0235	0.0741	0.1367	0.0975	1.3172	0.0774	0.0509	-0.0234	0.0742	0.1453	0.0976	1.3147
$\theta_d = 30,$ d = 2.40	0.0591	0.0384	-0.0143	0.0528	0.2929	0.0671	1.2717	0.0590	0.0379	-0.0145	0.0523	0.2841	0.0668	1.2764
$\theta_d = 30,$ d = 2.45	0.0560	0.0286	-0.0128	0.0414	0.0668	0.0542	1.3081	0.0560	0.0281	-0.0129	0.0410	0.0490	0.0540	1.3148
$\theta_d = 30,$ d = 2.30	0.0730	0.0425	-0.0219	0.0644	0.1557	0.0863	1.3399	0.0728	0.0418	-0.0220	0.0637	0.1401	0.0857	1.3446
$\theta_d = 30,$ d = 2.25	0.0787	0.0526	-0.0252	0.0778	0.2674	0.1030	1.3238	0.0784	0.0521	-0.0252	0.0773	0.2617	0.1025	1.3259
$\theta_d = 40, \\ d = 2.40$	0.0589	0.0383	-0.0140	0.0523	0.3398	0.0664	1.2684	0.0588	0.0376	-0.0142	0.0518	0.2872	0.0659	1.2740
$\theta_d = 40,$ d = 2.45	0.0536	0.0345	-0.0115	0.0460	0.3539	0.0576	1.2506	0.0536	0.0338	-0.0117	0.0455	0.2864	0.0572	1.2571
$\theta_d = 40,$ d = 2.30	0.0725	0.0425	-0.0214	0.0640	0.0664	0.0854	1.3348	0.0726	0.0418	-0.0217	0.0635	0.0466	0.0851	1.3415
$\theta_d = 40,$ d = 2.25	0.0713	0.0474	-0.0208	0.0682	0.2519	0.0889	1.3044	0.0781	0.0520	-0.0247	0.0767	0.2267	0.1014	1.3225
$\theta_d = 50, \\ d = 2.40$	0.0600	0.0341	-0.0144	0.0485	0.0849	0.0630	1.2975	0.0601	0.0335	-0.0147	0.0482	0.0505	0.0628	1.3048
$\theta_d = 50, \\ d = 2.45$	0.0535	0.0339	-0.0113	0.0453	0.3895	0.0566	1.2505	0.0535	0.0330	-0.0115	0.0445	0.2907	0.0560	1.2592
$\theta_d = 50, \\ d = 2.30$	0.0717	0.0444	-0.0206	0.0650	0.1101	0.0857	1.3171	0.0717	0.0436	-0.0209	0.0645	0.1010	0.0854	1.3238

$\theta_d = 50,$ d = 2.25	0.0781	0.0520	-0.0243	0.0763	0.1799	0.1005	1.3180	0.0780	0.0512	-0.0245	0.0756	0.1754	0.1001	1.3237
$\theta_d = 60, \\ d = 2.40$	0.0594	0.0352	-0.0140	0.0492	0.1139	0.0632	1.2843	0.0595	0.0346	-0.0142	0.0488	0.0874	0.0630	1.2911
$\theta_d = 60, \\ d = 2.45$	0.0543	0.0313	-0.0116	0.0428	0.1137	0.0544	1.2699	0.0544	0.0308	-0.0118	0.0425	0.0814	0.0543	1.2769
$\theta_d = 60, \\ d = 2.30$	0.0711	0.0454	-0.0201	0.0654	0.1377	0.0855	1.3066	0.0711	0.0446	-0.0203	0.0650	0.1288	0.0853	1.3129
$\theta_d = 60,$ d = 2.25	0.0779	0.0514	-0.0239	0.0753	0.1523	0.0993	1.3178	0.0779	0.0506	-0.0242	0.0748	0.1438	0.0989	1.3236
$\theta_d = 70,$ d = 2.40	0.0589	0.0361	-0.0136	0.0498	0.1460	0.0634	1.2737	0.0590	0.0356	-0.0138	0.0494	0.1281	0.0633	1.2797
$\theta_d = 70,$ d = 2.45	0.0538	0.0322	-0.0112	0.0434	0.1462	0.0546	1.2591	0.0539	0.0317	-0.0114	0.0431	0.1233	0.0546	1.2653
$\theta_d = 70,$ d = 2.30	0.0708	0.0457	-0.0197	0.0654	0.1482	0.0852	1.3013	0.0708	0.0450	-0.0200	0.0650	0.1360	0.0849	1.3072
$\theta_d = 70,$ d = 2.25	0.0778	0.0511	-0.0237	0.0748	0.1430	0.0985	1.3163	0.0777	0.0504	-0.0239	0.0743	0.1297	0.0982	1.3219
$\theta_d = 80,$ d = 2.40	0.0586	0.0368	-0.0134	0.0502	0.1707	0.0635	1.2669	0.0587	0.0363	-0.0136	0.0499	0.1577	0.0634	1.2725
$\theta_d = 80,$ d = 2.45	0.0535	0.0328	-0.0110	0.0439	0.1760	0.0549	1.2514	0.0535	0.0324	-0.0112	0.0436	0.1624	0.0548	1.2569
$\theta_d = 80,$ d = 2.30	0.0706	0.0458	-0.0195	0.0654	0.1519	0.0849	1.2986	0.0706	0.0452	-0.0198	0.0649	0.1370	0.0847	1.3043
$\theta_d = 80,$ d = 2.25	0.0776	0.0510	-0.0235	0.0745	0.1384	0.0980	1.3151	0.0776	0.0503	-0.0237	0.0740	0.1226	0.0977	1.3206

Complex 1 $[Fe(C,S_1)]^{2}$		x 1	NEVPT2 energy	Effective Har	niltonian Approach
L L F	$e(C_3S_5)$	2]2-	levels		11
	States		Energy (om-1)	Contribution	Contribution to E
	States		Energy (cm)	to D (cm ⁻¹)	(cm^{-1})
	5E	${}^{5}A_{1}$	000.0	0.000	0.000
	E	${}^{5}B_{1}$	2133.2	0.023	-0.009
⁵ D		${}^{5}\text{B}_{2}$	2261.3	0.005	0.003
	${}^{5}T_{2}$	515	7407.6	1.973	1.656
		Ъ	7460.1	1.908	-1.589
		36	16029.5	-0.633	-0.392
	$^{3}T_{1}$	Ľ	16038.2	-0.647	0.417
		$^{3}A_{2}$	16665.8	0.010	-0.006
		${}^{3}B_{2}$	16683.0	-0.014	0.013
	${}^{3}T_{2}$	315	20520.8	4.909	0.000
³ H		$^{\circ}\mathrm{E}$	21641.5	0.075	-0.008
	31	$^{3}A_{1}$	21690.3	0.192	0.000
	$^{\circ}\mathbf{E}$	${}^{3}B_{1}$	21781.3	-0.008	0.008
		³ E	22366.9	0.000	0.000
	${}^{3}T_{1}$		22589.2	0.000	0.000
$^{3}A_{2}$		${}^{3}A_{2}$	23031.6	-0.003	0.001
				Overall	Overall
				D = 6.122	E = 0.09

Table S4: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only upto ³H shown).

		Contribution to	Contribution to
SA-CASSCF states of	Major Electronic configurations	D	Е
Complex 1	(%)	(NEVPT2/EHA)	(NEVPT2/EHA)
		(cm^{-1})	(cm^{-1})
Ground state $({}^{5}A_{1})$	$d_{z2}^2 d_{x2-y2}^1 d_{xy}^1 d_{xz}^1 d_{yz}^1 (100\%)$	0.000	0.000
1^{st} excited state (⁵ B ₁)	$d_{z2}^{1}d_{x2-y2}^{2} d_{xy}^{1} d_{xz}^{1} d_{yz}^{1}$ (74%)	0.023	-0.009
2^{nd} excited state (⁵ B ₁)	$d_{z2}^{1}d_{x2-y2}^{1} d_{xy}^{2} d_{xz}^{1} d_{yz}^{1}$ (75%)	0.005	0.003
3 rd excited state (⁵ E)	$d_{z2}^{1}d_{x2-y2}^{1}d_{xy}^{1}d_{xz}^{2}d_{yz}^{1}$ (97%)	1.973	1.656
4 th excited state (⁵ E)	$d_{z2}^{1}d_{x2-y2}^{1}d_{xy}^{1}d_{xz}^{1}d_{yz}^{2}$ (97%)	1.908	-1.589

Table S5: Major electronic configurations arising from the first five quintet states

Table S6: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only upto ³H shown).

	Complex 2 $[Fe(C_3S_5)_2]^{2-}$		NEVPT2 energy levels	Effective Hamiltonian Approach				
	Stat	25	En argy (am-1)	Contribution to D	Contribution			
	Stat	es	Energy (cm ⁺)	(cm ⁻¹)	to $E(cm^{-1})$			
	51	${}^{5}A_{1}$	000.0	0.000	0.000			
	Ъ	${}^{5}B_{1}$	2258.7	-0.001	0.020			
⁵ D		⁵ B ₂	2655.4	0.032	-0.012			
	${}^{5}T_{2}$	51	6521.6	2.249	2.080			
		Ъ	8434.0	1.659	-1.472			
		³ E	15633.1	-0.177	0.164			
	³ T ₁	2.	16222.2	-0.079	-0.060			
		$^{3}A_{2}$	16641.4	-0.527	-0.436			
		$^{3}B_{2}$	17314.5	-0.466	0.424			
	${}^{3}T_{2}$	36	20708.5	0.494	0.000			
³ H		- L	20889.8	-0.002	0.005			
	31	$^{3}A_{1}$	21052.5	4.262	0.001			
	- E	$^{3}B_{1}$	21681.4	0.007	-0.001			
		3E	22606.4	0.000	0.000			
	$^{3}T_{1}$		23016.5	0.004	0.000			
	1	$^{3}A_{2}$	23492.4	0.001	0.000			
		•		Overall	Overall			
				D = 6.067	E = 0.67			

Complex 3 $[Fe(C_3S_5)_2]^{2-1}$		3 2] ²⁻	NEVPT2 energy levels	Effective Hamiltonian Approach				
	States		Energy (cm ⁻¹)	Contribution to D (cm ⁻¹)	Contribution to $E (cm^{-1})$			
	515	⁵ A ₁	000.0	0.000	0.000			
	[°] E	${}^{5}B_{1}$	1915.3	0.014	-0.026			
⁵ D		${}^{5}\text{B}_{2}$	2198.8	-0.041	0.025			
	⁵ T ₂	517	5664.2	2.731	2.727			
		Ъ	9579.8	1.377	-1.368			
		³ E	14038.1	-0.361	0.365			
	³ T ₁		14180.1	-0.225	-0.255			
		$^{3}A_{2}$	17587.9	-0.115	-0.242			
		$^{3}B_{2}$	18051.7	0.085	-0.021			
	${}^{3}T_{2}$	31	18668.5	-0.288	0.287			
³ H		$^{\circ}\mathrm{E}$	20497.9	-0.087	0.086			
	315	$^{3}A_{1}$	21236.8	0.240	-0.015			
	$^{5}\mathrm{E}$	$^{3}B_{1}$	21318.9	3.472	-0.003			
		317	22452.6	-0.005	0.005			
$^{3}T_{1}$		E	22664.5	-0.004	0.001			
	-	$^{3}A_{2}$	23658.2	0.164	-0.002			
				Overall	Overall			
				D = 6.014	E = 1.45			

Table S7: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only upto ³H shown).

[F	$\theta_{\rm d} = 60^{\circ}$ Se(C ₃ S ₅) ₂] ²⁻	NEVPT2 energy levels	Effective Hamiltonian Approach			
States		Energy (cm ⁻¹)	Contribution to D (cm ⁻¹)	Contribution to $E (cm^{-1})$		
	⁵ E	000.0 1486.6	0 -0.117	0 -0.002		
5D	⁵ T ₂	2084.0 4545.0 10984.1	0.14 -7.228 1.09	0.181 0.001 -1.09		
ЗН	³ T ₁	12139.0 12386.4 15177.3	-0.626 0.738 -0.132	0.624 -0.003 -0.132		
	³ T ₂	18810.9 19355.4 19427.0	0.036 0.182 -0.145	-0.002 -0.016 -0.147		
	³ E	20885.9 21590.5	-0.344 -0.01	0.31 0.011		
	³ T ₁	22196.2 22256.0 23416.9	-0.26 -1.397 0.002	-0.263 -1.4 -0.001		
			Overall $D = -7.32$	Overall $E = -1.58$		

Table S8: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only upto ³H shown).

[F	$\theta_{\rm d} = 50^{\circ}$ $\mathrm{Se}(\mathrm{C}_3\mathrm{S}_5)_2]^{2}$	NEVPT2 energy levels	Effective Hamiltonian Approach		
States		Energy (cm ⁻¹)	Contribution to D (cm^{-1})	Contribution to $E(cm^{-1})$	
⁵ E		000.0	0.000	0.000	
⁵ D	⁵ T ₂	1930.2 3774.8	0.608 -9.424	0.662 0.007	
		12171.6 10450.7	0.776	-0.715	
	³ T ₁	10851.1 12990.9	0.832 -0.108	-0.001 -0.107	
311	³ T ₂	18283.4 18843.2 20205 3	0.000 -0.008 -0.161	0.000 -0.045 -0.151	
	³ E	20331.7 21512.7	-0.022 -0.311	0.017	
	³ T ₁	21923.3 21951.0 23181.8	-0.302 0.000 -1.192	-0.281 0.001 -1.092	
			Overall D = -9.58	Overall $E = -0.21$	

Table S9: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only upto ³H shown).

[F	$\theta_{\rm d} = 40^{\circ}$ ${\rm Fe}({\rm C}_{3}{\rm S}_{5})_{2}]^{2-1}$	NEVPT2 energy levels	Effective Hamiltonian Approach		
States		Energy (cm ⁻¹)	Contribution to D (cm ⁻¹)	Contribution to E (cm ⁻¹)	
	⁵ E	000.0 388.0	0.000 0.240	0.000	
⁵ D	⁵ T ₂	1708.8 3088.4 13375.5	3.163 6.082 -0.635	-2.768 5.879 -0.001	
	³ T ₁	8593.1 9202.9 10810.0	4.089 -0.347 -0.027	0.009 -0.347 0.024	
³ H	³ T ₂	16573.6 18728.7 19509.5	0.000 -0.112 -0.164	0.000 0.07 0.161	
	³ E	20571.5 21280.3	0.646 -0.818	0.000 0.818	
	³ T ₁	21746.4 21756.6 22628.5	0.003 -0.009 -0.117	0.000 0.013 -0.028	
			Overall D = ± 11.00	Overall $E = 0.27$	

Table S10: NEVPT2 transition energy of the ligand field states and their individual contribution to the D and E values (only up to ³H shown).

Analytical Equations:

The rhombic parameter E depends on the difference between the transverse components of the diagonalized D tensor.

$$D = D_{ZZ} - \frac{1}{2} (D_{XX} + D_{YY}); E = \frac{1}{2} (D_{XX} - D_{YY})$$

When the beta electron is in the d_{z2} orbital (or D is positive) then the spin-allowed equations are-

$$E \propto \frac{3}{2} \left[\frac{1}{E_{yz}} - \frac{1}{E_{xz}} \right]$$

$$D_{xx} = -\frac{\zeta^2 \left| \left\langle d_{z^2} | \hat{L}_x | d_{yz} \right\rangle \left\langle d_{yz} | \hat{L}_y | d_{z^2} \right\rangle \right|}{4S^2 E_{yz} - E_{z^2}}$$

$$D_{yy} = -\frac{\zeta^2 \left| \left\langle d_{z^2} | \hat{L}_y | d_{zx} \right\rangle \left\langle d_{zx} | \hat{L}_y | d_{z^2} \right\rangle \right|}{E_{zx} - E_{z^2}}$$

 $D_{zz} = 0$

When the beta electron is in the $d_{x_{2-y_2}}$ orbital (or D is negative) then the applicable spin-allowed equations are-

$$E \propto \frac{1}{2} \left[\frac{1}{E_{yz}} - \frac{1}{E_{xz}} \right]$$

$$D_{xx} = -\frac{\zeta^2 \left| \left\langle d_{x^2 - y^2} | \hat{L}_x | d_{yz} \right\rangle \left\langle d_{yz} | \hat{L}_x | d_{x^2 - y^2} \right\rangle \right|}{4S^2 E_{yz} - E_{x^2 - y^2}}$$

$$D_{yy} = -\frac{\zeta^2 \left| \left\langle d_{x^2 - y^2} | \hat{L}_y | d_{xz} \right\rangle \left\langle d_{xz} | \hat{L}_y | d_{x^2 - y^2} \right\rangle \right|}{E_{xz} - E_{x^2 - y^2}}$$

$$D_{zz} = -\frac{\zeta^2 \left| \left\langle d_{x^2 - y^2} | \hat{L}_z | d_{xy} \right\rangle \left\langle d_{xy} | \hat{L}_z | d_{x^2 - y^2} \right\rangle \right|}{E_{xy} - E_{x^2 - y^2}}$$

Fig. **S1.** Qualitative ligand field splitting diagram of a d^6 system in T_d followed by D_{2d} symmetry environment (left). Dihedral angle of the $[Fe(C_3S_5)_2]^2$ -moiety (right).

Fig S2. D &g orientations of original complexes- 1(left), 2(middle) &3(right).

Fig. S3. d-orbital splitting of original complexes1, 2&3.

Figure S4. DC-magnetic susceptibility simulations along with the experimental points of the X-ray structures.

Fig. S5 *D* orientations of the model complexes. After the point $\theta_d = 30.7^{\circ}D$ orientation remains perpendicular to Fe-S4 plane.

Figure S6: d-orbital splitting diagram from $\theta_d = 70^\circ$ to 60°

Dihadral ar ala (A)	Roots	(5, 45)	Roots (5, 45, 22)			
Dinedral angle (θ_d)	D	E/D	D	E/D		
89.98°	6.123	0.015	6.099	0.015		
81.38°	6.067	0.111	6.039	0.118		
72.41°	6.014	0.242	5.943	0.262		
80.00°	6.124	0.117	6.093	0.127		
69.90°	6.122	0.264	6.051	0.287		
67.40°	6.136	0.310	-6.084	0.329		
64.70°	-6.384	0.305	-6.566	0.275		
62.70°	-6.758	0.267	-6.954	0.235		
59.90°	-7.322	0.216	-7.535	0.182		
49.80°	-9.584	0.022	-9.724	0.035		
39.70°	-10.863	0.304	11.527	0.267		
30.70°	16.064	0.040	16.393	0.042		
20.80°	17.867	0.078	19.400	0.093		
11.00°	18.515	0.090	20.171	0.098		
2.6°	18.656	0.100	20.374	0.104		

Table S11. NEVPT2 computed results of all the complexes with changing dihedral angle.

Table S12: Computed D parameter of θ_d from 90°-2° at different bond lengths (*values calculated considering CAS(10,7) active space including sulphur pi-bonding orbitals).

Avg. bond	θ _d = 89.98°	80°	69.9°	59.9°	49.8°	39.7°	30.7°	20.8°	11.0°	2.6°
icingui (A)	D	D	D	D	D	D	D	D	D	D
2.25	4.90	4.83	4.54	4.33	3.92	3.72	-3.19	64.01*	56.82*	54.73*
2.30	5.50	5.48	5.40	5.50	-5.99	-8.07	-16.43	14.52*	113.63*	81.67*
2.35	6.12	6.12	6.12	-7.32	-9.58	-10.86	16.06	19.40	20.17	20.37
2.40	6.78	6.73	-7.20	-9.47	-11.32	12.92	15.65	18.67	20.49	18.79
2.45	7.51	7.33	-8.87	-11.18	-12.75	14.43	17.62	18.25	18.47	18.57

Table S13: Computed E/D parameter of θ_d from 90°-2° at different bond lengths (* values calculated considering CAS(10,7) active space including sulphur pi-bonding orbitals)

Avg. bond length (Å)	θ _d = 89.98°	80°	69.9°	59.9°	49.8°	39.7°	30.7°	20.8°	11.0°	2.6°
2.25	0.017	0.014	0.035	0.048	0.015	0.110	0.220	0.162*	0.102*	0.080*
2.30	0.015	0.060	0.150	0.250	0.290	0.106	0.164	0.205*	0.002*	0.053*
2.35	0.015	0.110	0.264	0.216	0.022	0.300	0.040	0.093	0.098	0.104
2.40	0.014	0.173	0.270	0.064	0.154	0.271	0.153	0.091	0.151	0.009
2.45	0.014	0.230	0.160	0.050	0.230	0.326	0.310	0.167	0.110	0.098

Figure S7.Three dimensional magneto-structural correlation developed between dihedral angle vs bond-length vs E/D parameter.

Fig. S8. Contour line diagram of the Laplacian of electron density along the Fe-Sbond plane. Solid green lines indicate charge depletion $[\nabla_{\rho}^{2}(r)>0]$ and solid pink lines indicate charge concentration $[\nabla_{\rho}^{2}(r)<0]$.

 $\theta_{\rm d}$ = 90

 $\theta_{\rm d}$ = 60°

 $\theta_{\rm d}$ = 50°

Ð

 $\theta_{\rm d} = 40^{\circ}$

 $\theta_{\rm d}$ = 30°

Fig. S9. Contour line diagram of the Laplacian of electron density along the Fe-ligand plane.Solid green lines indicate charge depletion $[\nabla_{\rho}^{2}(r)>0]$ and solid pink lines indicate charge concentration $[\nabla_{\rho}^{2}(r)<0]$.

Fig. S10.Correlations between the QTAIM parameters and dihedral angle (a) $\rho(\mathbf{r})$ vs dihedral angle (b) $\nabla_{\rho(r)}^{2}$ vs dihedral angle (c) H(r) vs dihedral angle (d) $|V(\mathbf{r})|/G(\mathbf{r})$ vs dihedral angle(e) ε vs dihedral angle. Also showing the mapping of the D values along different regions of AIM correlation.

Fig. S11.Correlations between the QTAIM parameters and Fe-S bond length (a) $\rho(r)$ vs Fe-S bond length (b) $\nabla_{\rho(r)}^{2}$ vs Fe-S bond length (c) H(r) vs Fe-S bond length (d) |V(r)|/G(r) vs Fe-S bond length(e) ε vs dihedral angle.

Table S14. Topological parameters at BCPs in the Fe–S bonds of the Complex 1. All parameters are in a.u. $\rho(r)$ in units of eÅ⁻³, G(r), V(r), H(r) in units of a.u.

D'' + 1 + 1 = (0)	Fe–S ₁ bonds							Fe–S ₂ bonds							
Dihedral (Θ_d)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	
B3LYP/TZV	0.0642	0.0412	-0.0161	0.0573	0.1670	0.0734	1.2812	0.0643	0.0406	-0.0163	0.0569	0.1507	0.0733	1.2870	
B3LYP/def2-TZVP	0.0684	0.0429	-0.0184	0.0614	0.2058	0.0798	1.2996	0.0684	0.0429	0.0184	0.0614	0.2058	0.0798	1.2996	
		Fe–S ₃ bonds							Fe–S ₄ bonds						
	$\rho(\mathbf{r})$	$\nabla^{2}_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	$\rho(\mathbf{r})$	$\nabla^2_{\rho(r)}$	H(r)	G(r)	З	V(r)	V(r) /G(r)	
B3LYP/TZV	0.0642	0.0409	-0.0162	0.0571	0.1664	0.0733	1.2840	0.0641	0.0411	-0.0161	0.0572	0.1759	0.0733	1.2816	
B3LYP/def2-TZVP	0.0680	0.0429	-0.0183	0.0612	0.2097	0.0794	1.2973	0.0681	0.0430	-0.0183	0.0613	0.2186	0.0796	1.2985	

References

- 1. M. Römelt, S. Ye and F. Neese, *Inorg. Chem.*, 2008, 48, 784-785.
- 2. (a)A. Becke, J. Chem. Phys., 1993, 98, 5648;(b)C. Lee, W. Yang and R. G. Parr, Physical review B, 1988, 37, 785;(c)P. Stephens, F. Devlin, C. Chabalowski and M. J. Frisch, The Journal of Physical Chemistry, 1994, 98, 11623-11627;(d)M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark. J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D. 01, 2009.
- 3. R. Bader, Oxford, 1990.
- 4. R. F. Bader, J. Phys. Chem. A, 2009, 113, 10391-10396.
- 5. F. Biegler-König and J. Schönbohm, J. Comput. Chem., 2002, 23, 1489-1494.
- 6. M. Pinsky and D. Avnir, *Inorg. Chem.*, 1998, 37, 5575-5582.