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Experimental Section

Unless otherwise specified, all reagents were purchased from commercial suppliers and
directly used without further purification. Ha(ttp),! Rh(ttp)CI> and Rh(ttp)Me® were prepared
according to the literature procedures. Benzene was distilled over sodium under nitrogen. All
reactions were protected from light by wrapping with aluminum foil. For the reaction conducted
in Rotaflos (Teflon screw capped pressure tubes), the reactions were heated in aluminum heating
blocks on heaters and monitored by TLC and GC-MS until the complete consumption of the
starting material of activated alkyl bromides. For the reaction conducted in a sealed NMR tube,
the mixture was degassed by three freeze-pump-thaw cycles (77 K, 0.005 mmHg), and then
flame-sealed under vacuum, heated in oven in dark. Hexane for chromatography was distilled
from anhydrous calcium chloride. Thin-layer chromatography was performed on Merck
pre-coated silica gel 60 F254 plates. Silica gel (Merck, 70-230 and 230-400 mesh) was used for
column chromatography in air. NMR vyields were determined with 1,1,2,2-tetrachloroethane or
with benzene residue as the internal standard. GC yields were determined with naphthalene
spiked as the internal standard.

'H NMR and BC{*H} NMR spectra were recorded on a Bruker AV400 instrument at 400,
100 MHz, respectively. Chemical shifts for 'H NMR were reported in ppm and referenced with
the residual solvent protons in CeDs (6 7.15 ppm) or in CDCIz (6 7.26 ppm) as the internal
standards. Chemical shifts for *C NMR were referenced to CDClz (5 77.1 ppm) or CeDs (5
128.1 ppm). Coupling constants (J) were reported in hertz (Hz). High-resolution mass
spectrometry (HRMS) was performed on a Bruker SolariX 9.4 Tesla FTICR MS /
Thermofinnigan MAT 95 XL instrument in electrospray ionization (ESI) mode using

MeOH/CH,CI; (1/1) as the solvent. GC-MS analysis was conducted on a GCMS-QP2010 Plus
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system using a Rtx-5MS column (30 m x 0.25 mm). The details of GC program are as follows:
The column oven temperature and injection temperature were 100.0 and 250.0 °C. Helium was
used as carrier gas. Flow control mode was chosen as linear velocity (36.3 cm st) with pressure
68.8 kPa. The total flow, column flow and purge flow were 13.5, 0.95 and 3.0 mL min?,
respectively. Split mode injection with split ratio 10.0 was applied. After injection, the column
oven temperature was kept at 100 °C for 2 minutes and then temperature was elevated at a rate of
30 °C mint for 5 minutes until 250 °C. The temperature of 250 °C was kept for at least 1

minute.

Preparation of (2,2-Dibromocyclopropyl)benzene (1).* 1 was prepared according to the
literature procedures.®> A round-bottomed flask was charged with styrene (1150 pL, 10 mmol),
tetrabutylammonium bromide (TBAB) (164.1 mg, 0.51 mmol, 5 mol %), a 17 M aqueous
solution of NaOH (6 mL, 102 mmol). The mixture was stirred at rt and bromoform (5 mL, 57
mmol) was added in two portions. The reaction was carried out at rt until the complete
consumption of styrene as judged by TLC analysis. After the reaction, the mixture was diluted
with H>O and extracted with CH2Cl> (50 mL x 3), washed with brine, dried and concentrated.
Purification of the residue by column chromatography with hexane as the eluent gave the title
product (1) (1920.1 mg, 6.96 mmol, 70%) as a yellow oil. Rt = 0.42 (hexane). *H NMR (CDCls,
400 MHz): 5 2.02 (dd, J = 7.4, 8.4 Hz, 1H), 2.14 (dd, J = 7.4, 10.7 Hz, 1H), 2.96 (dd, J = 8.4,
10.7 Hz, 1H), 7.25-7.39 (m, 5H).

The Sealed NMR Tube Reaction of (2,2-Dibromocyclopropyl)benzene (1) Catalyzed by
Rh(ttp)Me. (2,2-Dibromocyclopropyl)benzene (1; 16 pL, 0.10 mmol) stock solution with 2 mL
CeDs was prepared. Rh(ttp)Me (0.8 mg, 0.0010 mmol), H2O (18 pL, 1.0 mmol) and 1 stock

solution (400 pL, 0.020 mmol) were added into a Teflon screw head stoppered NMR tube,
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degassed and flame-sealed under vacuum. The reaction was monitored by *H NMR spectroscopy.
The reaction at 180 °C for 48 h gave (2-bromoprop-1-en-1-yl)benzene (2a)® in 45% vyield.

The Sealed NMR Tube Reaction to Test the Thermal Stability of
(2,2-Dibromocyclopropyl)benzene. 1 stock solution (400 uL, 0.020 mmol) and H.O (18 pL, 1.0
mmol) were added into a Teflon screw head stoppered NMR tube, degassed and flame-sealed
under vacuum. The reaction was monitored by *H NMR spectroscopy. The reaction at 180 °C for
48 h gave (2,3-dibromoprop-1-enyl)benzene (1a)’ quantitatively. 'H NMR (CDCls, 400 MHz): &
E isomer: 4.40 (s, 2H), 7.12 (s, 1H), 7.34-7.43 (m, 5H). Z-isomer: 4.44 (s, 2H), 7.13 (s, 1H),

7.34-7.40 (m, 3H), 7.64 (d, J = 7.1 Hz, 2H).

Ph™ Ny B

Br
(2)-1a
Preparation of (Z)-(2,3-Dibromoprop-1-enyl)benzene ((Z2)-1a). (2)-1a was prepared according

to the literature procedures.® To a solution of (Z)-2-bromo-3-phenylacrylaldehyde (2.11 g, 10.0
mmol) in THF-H20 (9:1, 20 mL) at 0 °C was added NaBHa4 (266 mg, 7.0 mmol). It was stirred at
0 °C for 0.5 h until the complete consumption of (Z)-2-bromo-3-phenylacrylaldehyde. Then
water was added. The mixture was extracted with Et2O, dried over Na;SO4. After that, it was
concentrated to afford a pale-yellow liquid. It was directly involved into the next step without
further purification.

To a solution of the above alcohol in CH2Cl> at 0 °C were added CBrs (3.97 g, 12.0 mmol), PPhs
(3.15 g, 12.0 mmol). Then it was allowed to warm to rt for 4 h. After that, the reaction mixture
was concentrated under a reduced pressure. The residue was directly purified by flash
chromatography eluting with hexane to afford (Z)-1a (2.68 g, 9.8 mmol, 98%) as a colorless oil.
Rt = 0.33 (hexane). H NMR (CDCls, 400 MHz): § 4.44 (s, 2H), 7.13 (s, 1H), 7.34-7.40 (m, 3H),

7.64 (d, J = 7.1 Hz, 2H).
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General Procedures for the Reaction of (Z2)-(2,3-Dibromoprop-1-enyl)benzene ((Z)-1a) with
Water. Rh(ttp)Me (4.0 mg, 0.0051 mmol), (Z)-1a (15.5 uL, 0.10 mmol), H20 (90 uL, 5.0 mmol)
were added to benzene (2 mL). The mixture was heated at a specified temperature under air.
Excess benzene was removed by rotary evaporation. The residue was purified by pipet column
chromatography eluting with hexane to give (2-bromoprop-1-en-1-yl)benzene (2a)® ° with an
isolated vyield. Alternatively, the crude product was taken for 'H NMR analysis with
1,1,2,2-tetrachloroethane as the internal standard to obtain the NMR yield. The product of 2a
contained E and Z isomer in 1.1:1.0 ratio. *tH NMR (CDCls, 400 MHz): & E isomer 2.49 (d, J =
0.9 Hz, 3H), 6.73 (s, 1H), 7.21-7.37 (m, 5H); Z isomer 2.47 (s, 3H), 6.97 (s, 1H), 7.21-7.37 (m,
5H). MS (El, 70 eV) m/z (relative intensity) 198 (31%, M*(8!Br)), 196 (32%, M*("°Br)), 117

(74%), 116 (33%) 115 (100%), 91 (35%).

Reaction Conditions Optimization. The optimization reactions followed the general procedures
described above with the changes of atmosphere, temperature, catalyst loading, solvent, additive,
and reaction time.

Temperature and Atmosphere Effects: Rh(ttp)Me (4.0 mg, 0.0051 mmol), (2)-1a (15.5 pL, 0.10
mmol), H20 (90 uL, 5.0 mmol) were added to benzene (2 mL). For the reaction conducted under
N2, the mixture was degassed for three freeze-pump-thaw cycles, filled with N2. The mixture was
heated at 200 °C for 12 h. 2a was obtained in 37% yield under N2; 41% yield under air.
Rh(ttp)Me (4.0 mg, 0.0051 mmol), (2)-1a (15.5 uL, 0.10 mmol), H20 (90 uL, 5.0 mmol) were
added to benzene (2 mL). The mixture was heated under air. Yields of 2a for the reaction at

180 °C for 37 h: 36%; at 200 °C for 12 h: 41%.
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Table S1. Temperature and Atmosphere Effects of the Hydrodebromination Reaction

Rh(ttp)Me (5 mol %)
Ph/vBr H,0 (50 equiv) - Ph/\“ﬂ\H
Br CeHe, air/N,, dark Br
(2)-1a temp, time 2a
(0.1 mmol, 50 mM)

entry air/N2 temp/°C time/h 2a yield®/%

1 air 180 37 36
2 air 200 12 41
3 N2 200 12 37

4solated yield, E:Z = 1.1:1.0.

Table S2. Catalyst Loading Effect of the Hydrodebromination Reaction

Rh(ttp)Me (n mol %)

Ph/VBr H,0 (50 equiv) = Ph/\f"’J\H
Br

Br CeHe, air, dark
(2)-1a 200 °C, time

(0.1 mmol, 50 mM)

2a

entry n (Rh(ttp)Me) time/h 2ayield®/%

1P 0 12 traced
2° 2.5 12 24
3 5 12 41
4 10 6 36

3Isolated yield, E:Z = 1.1:1.0. 94% recovery of 1a (including the E isomer). ¢17% recovery of 1a

(including the E isomer). INMR vyield.

Catalyst Loading Effect: Rh(ttp)Me (n mol %), (Z)-1a (15.5 uL, 0.10 mmol), H2O (90 uL, 5.0

mmol) were added to benzene (2 mL). The mixture was heated at 200 °C under air. Yields of 2a
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for the reaction without Rh(ttp)Me for 12 h: trace amount, together with 94% recovery of la

(including the E isomer); with 2.5 mol % Rh(ttp)Me for 12 h: 24%;. with 5 mol % Rh(ttp)Me for

12 h: 41%;. with 10 mol % Rh(ttp)Me for 12 h: 36%.

Table S3. Solvent Effect of the Hydrodebromination Reaction

Rh(ttp)Me (5 mol %)

Ph/y\Br Hzo (50 eqUiV) _ Ph/\r\ﬂ“r\H
Br

Br solvent, air, dark
(Z)-1a 200 °C, time

2a
(0.1 mmol, 50 mM)

entry  solvent  time/h 2ayield¥/%

1 CeHe 12 41
2P PhCH3 8 58
3 PhCFs 12 36
4 DME 24 11
5 EtOAC 9 15°
6 ClC=CCl, 5 38°

3Isolated yield, E:Z = 1.1:1.0. °29% BnBr (w.r.t. (2)-1a) was isolated. “NMR vyield.

Solvent Effect: Rh(ttp)Me (4.0 mg, 0.0051 mmol), (2)-1a (15.5 pL, 0.10 mmol), H20 (90 uL,
5.0 mmol) were added to a specified solvent (2 mL). The mixture was heated at 200 °C under air.
Yields of 2a for the reaction in Ce¢Hs for 12 h: 41%; in PhCHjs for 8 h: 58%, together with BnBr

formed in 29% yield; in PhCF3 for 12 h: 36%; in DME for 24 h: 11%; in EtOAc for 9 h: 15%; in

Cl,C=CCI; for 5 h: 38%.
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Additive Effect: Rh(ttp)Me (4.0 mg, 0.0051 mmol), (Z)-1a (15.5 pL, 0.10 mmol), additive w/o
H>0O (90 puL, 5.0 mmol) were added to benzene (2 mL). The mixture was heated at 200 °C under
air. Yields of 2a for the reaction without any additive for 12 h: 41%; with pH = 4.0 buffer (90 pL)
for 9 h: 49%; with pH = 5.0 buffer (90 uL) for 12 h: 51%; with pH = 6.0 buffer (90 uL) for 12 h:

51%; with pH = 7.0 buffer (90 pL) for 12 h: 46%; with pH = 8.0 buffer (90 uL) for 8 h: 43%;

with pH = 9.0 buffer (90 pL) for 8 h: 45%; with 5 equiv K2CO3z (69.1 mg, 0.50 mmol) for 12 h:

25%; with 1 equiv CaCOs3 (10.0 mg, 0.10 mmol) for 2 h: 10%, together with PhCH=C(Br)CH2Ph

(2a°) in 43% vyield.

For (Z)-(2-bromoprop-1-ene-1,3-diyl)dibenzene ((Z2)-2a’), Rf = 0.29 (hexane).

'H NMR (CDCls, 400 MHz): 6 3.96 (s, 2H), 6.83 (s, 1H), 7.29-7.39 (m, 8H), 7.60 (d, J = 7.4 Hz,

2H).

13C NMR (CDCls, 100 MHz) § 49.5, 125.9, 127.1, 127.9, 128.2, 128.7, 129.0, 129.2, 129.2,

136.0, 127.8.

HRMS (ESIMS): calcd for C1sH13Br ([M]*) m/z 272.0195, found 272.0194.

For (E)-(2-bromoprop-1-ene-1,3-diyl)dibenzene ((E)-2a”), R = 0.39 (hexane).

'H NMR (CDCls, 400 MHz): § 4.04 (s, 2H), 7.22 (s, 1H), 7.27-7.37 (m, 10H).

13C NMR (CDCls, 100 MHz) § 42.4, 120.4, 126.9, 127.1, 127.8, 128.1, 128.6, 128.8, 128.8,

134.4, 137.6.

HRMS (ESIMS): calcd for C1sH13Br ([M]*) m/z 272.0195, found 272.0195.

Yields of 2a for the reaction with 1 equiv pyridine (8 pL, 0.10 mmol) for 24 h: 36%; with 1

equiv PhC=CH (11 pL, 0.10 mmol) for 14 h: 64%, together with 29% yield of 1-bromostyrene

and 26% vyield of acetophenone formed; with 2,6-di-'Bu-pyridine additive without Rh(ttp)Me for

12 h: trace amount, together with 92% recovery of la; with DIPEA additive and without
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Rh(ttp)Me for 12 h: trace amount, together with 15% recovery of la, 70% vyield of

Ph™ " 0H
Br 1016% yield of PACH(OH)C(Br)=CH,;'% with 2,6-di-'Bu-pyridine additive and 5

mol % Rh(ttp)Me for 6 h: 50% vyield of 2a, together with quantitative recovery of
2,6-di-'Bu-pyridine; with DIPEA additive with 5 mol % Rh(ttp)Me for 3 h: 45%, together with

PhCH,C(Br)=CH. in 11% yield.
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Table S4. Additive Effect of the Hydrodebromination Reaction

Rh(ttp)Me (5 mol %)

Ph/VBr H,0 (50 equiv) _ Ph/\,ﬁ*‘\H
Br

Br addit.ive
(2)-1a CeHe, air, dark oa
(0.1 mmol, 50 mM) 200 °C, time
entry additive time/h 2a yield?/%
1 none 12 41>
2 pH = 4.0 buffer 9 49
3 pH = 5.0 buffer 12 51
4 pH = 6.0 buffer 12 51
5 pH = 7.0 buffer 12 46
6 pH = 8.0 buffer 8 43
7 pH = 9.0 buffer 8 45
8 5 equiv K2COs3 12 25
g° 1 equiv CaCOs 2 10
10 1 equiv pyridine 24 36
114 1 equiv DIPEA 3 45
12° 1 equiv DIPEA 12 trace
13" 1 equiv 2,6-di-(‘Bu)pyridine 6 50
148 1equiv 2,6-di-("Bu)pyridine 12 trace
15" 1 equiv PhC=CH 14 64

ANMR vyield, E:Z = 1.1:1.0. PlIsolated yield. 43% yield of PhCH=C(Br)CH.Ph. 911% formation

PR " 0H
of PhCH2C(Br)=CHo>. *Without Rh(ttp)Me, 70% formation of Br and 16% formation
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OH

Ph
of Br . Quantitative recovery of 2,6-di-(‘Bu)pyridine, and trace amount of

2-bromo-3-phenylacrylaldehyde. Without Rh(ttp)Me, 92% recovery of la (including the E

isomer). "29% yield of a-bromostyrene and 26% yield of acetophenone formed.

1) \MgBr (excess)
_CHO THF, N5, 0 °C-rt

= —_—
Ar Ar DeM . A gy

2) quenched with NH,CI (aq)
Scheme S1. The Synthetic Route for the Allylic Bromides 1b-d
General Procedures for the Synthesis of Allylic Bromides 1b, 1c, and 1d.
Allylic bromides 1b, 1c, and 1d were prepared by a two-step method.? First, vinylation of the
corresponding aldehydes/ketones with the Grignard reagent of vinylmagnesium bromide gave
the addition product of the allylic alcohols, then PBrs-mediated bromination afforded the final

desired products of the allylic bromides.

Br

1c
Representative Synthesis of the Allylic Bromide of 1c.
To a stirred solution of 2-naphthaldehyde (1561.8 mg, 10 mmol) in anhydrous THF (10 mL) at
0 °C was added vinylmagnesium bromide (1 M in THF, 12 mL, 12 mmol) dropwise, it was
allowed to react at 0 °C for 0.5 h, then warm to rt for 2.5 h. The reaction was quenched with

NH4Cl (ag). The mixture was extracted with Et,O, then dried over Na;SO4. The allylic alcohol
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was obtained (1800.8 mg, 9.8 mmol, 98%) after rotary evaporation of the solvents.

To an ice-cold solution of the above prepared allylic alcohol (1800.8 mg, 9.8 mmol) in CH2Cl,
(20 mL) was added PBrs3 (0.95 mL, 10.0 mmol) dropwise. It was then allowed to warm to rt and
reacted overnight. The reaction was quenched with sat. NaHCO3 (aq), extracted with DCM, dried
over Na2SOs, and concentrated by rotary evaporation.
(E)-2-(3-bromoprop-1-en-1-yl)naphthalene® (1c; 2020.6 mg, 8.2 mmol, 84%) was obtained as a
white solid after further recrystallization from DCM/MeOH. *H NMR (CDCls, 400 MHz): § 4.23
(d, J = 7.8 Hz, 2H), 6.52 (dt, J = 15.6, 7.8 Hz, 1H), 6.81 (d, J = 15.6 Hz, 1H), 7.46-7.50 (m, 2H),

7.59 (dd, J = 8.7, 1.2 Hz, 1H), 7.75 (s, 1H), 7.79-7.81 (m, 3H).

Br@—//_\ Br

1b
Synthesis of the Allylic Bromide of 1b. (E)-1-(4-Bromophenyl)-I-propen-3-y1 bromide (1b)
was prepared following the representative procedures for the synthesis of 1c. Starting from
p-bromobenzaldehyde (925 mg, 5.0 mmol) in THF (10 mL), with the addition of
vinylmagnesium  bromide solution (1 ™M in THF, 6.0 mL, 6.0 mmol),
1-(p-bromophenyl)prop-2-en-1-ol (989 mg, 4.64 mmol, 93%) was obtained.}* Then
1-(p-bromophenyl)prop-2-en-1-ol (302 mg, 1.42 mmol) was utilized for further bromination
reaction with PBrz (190 puL, 2.00 mmol) to give 1b (316 mg, 1.14 mmol, 81%) as a brown
solid.®® IH NMR (CDCls, 400 MHz): & 4.14 (d, J = 7.8 Hz, 2H), 6.39 (dt, J = 15.6, 7.8 Hz, 1H),

6.58 (d, J = 15.6 Hz, 1H), 7.24-7.26 (m, 2H), 7.44-7.46(m, 2H).
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Ph)\/\Br

1d

Synthesis of the Allylic Bromide of 1d. (3-Bromoprop-1-ene-1,1-diyl)dibenzene (1d) was
prepared following the representative procedures for the synthesis of 1c. Starting from
benzophenone (1826.5 mg, 10 mmol) in THF (10 mL), with the addition of vinylmagnesium
bromide solution (1 M in THF, 12.0 mL, 12 mmol), 1,1-diphenyl-2-propen-1-ol*® (2173.8 mg, 10
mmol, 100%) was obtained. Then, 1-diphenyl-2-propen-1-ol (105.1 mg, 0.5 mmol) was utilized
for further bromination reaction with PBr3 (50 puL, 0.53 mmol) to give 1d (129.7 mg, 0.47 mmol,
94%).13 'H NMR (CDCls, 400 MHz): & 4.06 (d, J = 8.5 Hz, 2H), 6.34 (t, J = 8.5 Hz, 1H),

7.23-7.44 (m, 10H).

OH

DABCO cOoget PBrs COOEt
PhCHO + & “COOEt —— Ph)ﬁf - Ph/\[

Br
1e

Scheme S2. Synthesis of the Allylic Bromide 1e

Synthesis of the Allylic Bromide of 1e. Synthesis of 1e ((2)-Ethyl
2-(bromomethyl)-3-phenylacrylate) involved the Baylis-Hillman reaction of benzaldehyde with
ethyl acrylate to give the allylic alcohol, followed by the bromination mediated by PBrs3
Ethyl acrylate (4250 uL, 40.0 mmol) and 1,4-diazabicyclo[2,2,2]octane (DABCO) (1.12 g, 10.0
mmol) were added to the solution of benzaldehyde (2040 uL, 20.0 mmol) in 2 mL
1,4-dioxane/water (v:v = 1:1) at rt. The solution was stirred for 3 d at rt for another 5 d at 50 °C.

Excess ethyl acrylate and solvent were removed by high vacuum. The crude product was purified
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by column chromatography on silica gel eluting first with CH>Cl./hexane then with CH2Cl; to
afford desired ethyl 2-[1-hydroxy(phenyl)methyl]acrylate (3.06 g, 14.8 mmol, 74%).%” PBrs (340
uL, 3.6 mmol) was slowly injected into the solution of ethyl 2-[hydroxy(phenyl)methyl]acrylate
(618 mg, 3.0 mmol) in Et2O (15 mL) at 0 °C. The solution was stirred for 2 h at 0 °C. Saturated
aqueous NaHCO3 (10 mL) and water (10 mL) were added to the solution and stirred for 10 min.
The reaction mixture was worked up by extraction with Et2O (3 x 5 mL). The organic phase was
washed with saturated aqueous NaHCO3 and brine, dried by anhydrous MgSO4 and concentrated
to give 1e (668 mg, 2.48 mmol, 83%).1 *H NMR (CDCls, 400 MHz): § 1.38 (t, J = 7.1 Hz, 3H),
4.34 (g, J = 7.1 Hz, 2H), 4.40 (s, 2H), 7.41-7.59 (m, 5H), 7.83 (s, 1H).

General Procedures for the Synthesis of Benzylic Bromides 3c, 3f

3a, 3b, 3d, and 3e are commercially available and directly used without further purification. The
benzylic bromides of 3c, 3f were prepared first by the reduction of corresponding ketones with

NaBHjs, followed by the bromination mediated by PBrs.

3c
Scheme S3. Synthesis of the Allylic Bromide 3c

Synthesis of 9-Bromofluorene (3c). To a stirred solution of 9-fluorenone (1840 mg, 10 mmol)
in THF (4.5 mL)/H20 (v:v = 9:1) was added NaBH4 (263.0 mg, 7.0 mmol) in one portion. The
mixture was stirred at rt for 20 h. The reaction was then quenched with water, extracted with
Et20, dried over Na>SOs, and concentrated to give 9-hydroxyfluorene (1862 mg, 10 mmol, 100%)
as a white solid.

To a stirred solution of 9-hydroxyfluorene (915.5 mg, 5.0 mmol) in DCM (10 mL) at rt was

added PBr3 (0.25 mL, 2.66 mmol). The mixture was stirred at rt for 1 h. The reaction was then
S14



quenched with sat. NaHCO3 (aq), extracted with DCM, dried over Na>SOa, and concentrated to
give 9-bromofluorene (3c; 1171.2 mg, 4.8 mmol, 96%) as a pale yellow solid.*® *H NMR (CDCls,

400 MHz): § 6.00 (s, 1H), 7.34-7.42 (m, 4H), 7.67 (t, J = 8.1 Hz, 4H).

Qo ="
_—

3f

Scheme S4. Synthesis of the Allylic Bromide 3f

Synthesis of 2-(1-Bromoethyl)naphthalene (3f). To a stirred solution of 2-acetonaphthone
(1702.3 mg, 10 mmol) in THF (9.0 mL)/H20 (v:v = 9:1) was added NaBH4 (259.2 mg, 6.8 mmol)
in one portion. The mixture was stirred at rt for 16 h. The reaction was then quenched with water,
extracted with Et>O, dried over NaxSQO4, and concentrated to give 1-(2-naphthyl)ethanol (1626.4
mg, 9.4 mmol, 94%) as a white solid.

To a stirred solution of 1-(2-naphthyl)ethanol (517.6 mg, 3.0 mmol) in DCM (5 mL) at 0 °C was
added PBrz (0.14 mL, 1.5 mmol). The mixture was then allowed to warm to rt for 20 h. The
reaction was then quenched with sat. NaHCO3s (aq), extracted with DCM, dried over anhydrous
Na>SOs4, and concentrated to give 2-(1-bromoethyl)naphthalene (3f; 560.6 mg, 2.4 mmol, 80%)
as a white solid.2 'H NMR (CDCls, 400 MHz): 5 2.16 (d, J = 6.8 Hz, 3H), 5.41 (g, J = 6.8 Hz,
1H), 7.49-7.51 (m, 2H), 7.61 (dd, J = 8.6, 1.7 Hz, 1H), 7.82-7.86 (m, 4H).

General Procedures for the Substrate Scope Examination of Allylic Bromides and Benzylic
Bromides. Rh(ttp)Me (4.0 mg, 0.0051 mmol), an allylic/benzylic bromide (0.10 mmol), H2O (90
uL, 5.0 mmol), and 2,6-di-'Bu-pyridine (21 pL, 0.10 mmol) were added to benzene (2 mL). The
mixture was heated at 200 °C under air until the complete consumption of the allylic/benzylic

bromide monitored by GC-MS and TLC. Excess benzene was removed by rotary evaporation.
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The crude reaction mixture was taken for 'H NMR spectroscopy analysis with
1,1,2,2-tetrachloroethane (10 uL, 0.0945 mmol) as the internal standard to obtain the NMR yield.
Substrate Scope of Allylic Bromides

With (2)-(2,3-Dibromoprop-1-enyl)benzene ((Z)-1la) Substrate. The reaction with (Z)-la
(155 pL, 0.10 mmol) was heated under air at 200 °C for 6 h to give
(2-bromoprop-1-en-1-yl)benzene (2a)®° (E/Z = 1.1/1.0) in 50% NMR yield. *H NMR (CDCls,
400 MHz): 6 E isomer 2.49 (d, J = 0.9 Hz, 3H), 6.73 (s, 1H), 7.21-7.37 (m, 5H); Z isomer 2.47 (s,
3H), 6.97 (s, 1H), 7.21-7.37 (m, 5H). MS (El, 70 eV) m/z (relative intensity) 198 (31%,
M*(81Br)), 196 (32%, M*(°Br)), 117 (74%), 116 (33%) 115 (100%), 91 (35%).

With (E)-1-(4-Bromophenyl)-I-propen-3-y1l bromide (1b) Substrate. The reaction with 1b
(27.5 mg, 0.10 mmol) was heated under air at 200 °C for 4 h to give 4-bromo-S-methylstyrene
(2b)2! (E/Z = 10/1) in 57% NMR yield. H NMR (CDCls, 400 MHz): & E isomer 1.88 (d, J = 6.3
Hz, 3H), 6.24 (dq, J = 15.8, 6.3 Hz, 1H), 6.35 (d, J = 15.8 Hz, 1H), 7.19 (d, J = 8.3 Hz, 2H), 7.41
(d, J = 8.3 Hz, 2H); Z isomer: characteristic 5.79-5.87 (m, 1H). MS (EI, 70 eV) m/z (relative
intensity) 198 (31%, M*(3'Br)), 196 (31%, M*("Br)), 117 (100%), 115 (86%).

With (E)-2-(3-Bromoprop-1-en-1-yl)naphthalene (1c) Substrate. The reaction with 1c (24.4
mg, 0.10 mmol) was heated under air at 200 °C for 4 h to give 1-(2-naphthyl)propene?? (2c) (E/Z
= 8/1) in 40% NMR vyield. *H NMR (CDCls, 400 MHz): & E isomer 1.92 (d, J = 6.4 Hz, 3H),
6.34 (dg, J = 15.8, 6.4 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 7.34-7.76 (m, 7H); Z isomer:
characteristic 1.96 (dd, J = 7.2, 1.1 Hz, 3H). MS (EI, 70 eV) m/z (relative intensity) 168 (100%,
M"*), 167 (85%), 153 (59%), 152 (43%).

With (3-Bromoprop-1-ene-1,1-diyl)dibenzene (1d) Substrate. The reaction with 1d (24 pL,

28.2 mg, 0.10 mmol) was heated under air at 200 °C for 4 h to give 1,1-diphenylpropene (2d)?
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in 76% NMR yield. 'H NMR (CDCls, 400 MHz): § 1.75 (d, J = 7.0 Hz, 3H), 6.17 (g, J = 7.0 Hz,
1H), 7.17-7.50 (m, 10H). MS (El, 70 eV) m/z (relative intensity) 194 (100%, M*), 193 (60%),
179 (35%), 178 (44%), 165 (28%), 115 (78%).

With (2)-Ethyl 2-(bromomethyl)-3-phenylacrylate (1e) Substrate. The reaction with le (19
pL, 27.1 mg, 0.10 mmol) was heated under air at 200 °C for 12 h to give ethyl
2-methyl-3-phenylacrylate®® (2e) (E/Z = 15/1) in 66% NMR yield with 10% recovery of le. 'H
NMR (CDCls, 400 MHz): & E isomer 1.35 (t, J = 7.1 Hz, 3H), 2.12 (s, 3H), 4.27 (q, J = 7.1 Hz,
2H), 7.35-7.42 (m, 5H), 7.69 (s, 1H). Z isomer 1.10 (t, J = 7.1 Hz, 3H), 2.09 (s, 3H), 4.11 (q, J =
7.1 Hz, 2H), 6.70 (s, 1H), 7.22-7.40 (m, 5H). MS (El, 70 eV) m/z (relative intensity) 190 (26%,
M*), 161 (15%), 145 (39%), 144 (30%), 117 (80%), 116 (86%), 115 (100%), 91 (33%).
Substrate Scope of Benzylic Bromides

With 2-(Bromomethyl)naphthalene (3a) Substrate. The reaction with 3a (22.1 mg, 0.10 mmol)
was heated under air at 200 °C for 18 h to give 2-methylnaphthalene®® (4a) in 60% NMR yield.
IH NMR (CDCls, 400 MHz): § 2.51 (s, 3H), 7.31 (d, J = 8.2 Hz, 1H), 7.37-7.45 (m, 2H), 7.60 (s,
1H), 7.72-7.79 (m, 3H). MS (EI, 70 eV) m/z (relative intensity) 142 (100%, M*), 141 (86%), 115
(30%).

With 4-'Bu-Benzyl Bromide (3b) Substrate. The reaction with 3b (18.5 pL, 22.9 mg, 0.10
mmol) was heated under air at 200 °C for 28 h to give 4-tert-butyltoluene?® (4b) in 66% GC
yield. H NMR (CDCls, 400 MHz): & 1.32 (s, 9H), 2.33 (s, 3H), 7.13 (d, J = 7.9 Hz, 2H), 7.30 (d,
J=7.9 Hz, 2H). MS (El, 70 eV) m/z (relative intensity) 148 (23%, M*), 133 (100%), 105 (58%).
With 9-Bromofluorene (3c) Substrate. The reaction with 3c (24.5 mg, 0.10 mmol) was heated
under air at 200 °C for 12 h to give fluorene?” (4c) in 43% NMR yield, together with

9,9-hifluorene?’ (4¢’) in 9% NMR vyield. *H NMR (CDCls, 4c, 400 MHz): § 3.88 (s, 2H), 7.28 (t,
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J=7.6Hz, 2H), 7.48 (t, J = 7.1 Hz, 2H),.7.53 (d, J = 7.2 Hz, 2H), 7.78 (d, J = 7.3 Hz, 2H). MS
(El, 70 eV) m/z (relative intensity) 166 (100%, M), 165 (94%); *H NMR (CDCls, 4¢’, 400
MHz): & 4.83 (s, 2H), 6.95 (br, 4H), 7.09 (t, J = 7.4 Hz, 4H), 7.27 (t, = 7.5 Hz, 4H), 7.65 (d, J =
7.6 Hz, 4H). (El, 70 eV) m/z (relative intensity) 330 (9%, M™), 165 (100%).

With 4-Phenyl-Benzyl Bromide (3d) Substrate. The reaction with 3d (24.7 mg, 0.10 mmol)
was heated under air at 200 °C for 48 h to give 4-methyl-1,1’-biphenyl?® (4d) in 70% NMR vyield.
'H NMR (CDCls, 400 MHz): & 2.42 (s, 3H), 7.28-7.60 (m, 9H). (El, 70 eV) m/z (relative
intensity) 168 (100%, M*), 167 (73%), 153 (26%), 152 (30%).

With Ethyl (4-Bromomethyl)benzoate (3e) Substrate. The reaction with 3e (24.3 mg, 0.10
mmol) was heated under air at 200 °C for 48 h to give ethyl 4-methylbenzoate?® (4e) in 38%
NMR vyield, together with 4-methylbenzoic acid® (4e’) in 25% NMR yield. *H NMR (CDCls, 4e,
400 MHz): & 1.39 (t, J = 7.3 Hz, 3H), 2.41 (s, 3H), 4.37 (g, J = 7.3 Hz, 2H), 7.23 (d, J = 8.0 Hz,
2H), 7.95 (d, J = 8.2 Hz, 2H). (El, 70 eV) m/z (relative intensity) 164 (12%, M*), 149 (5%), 136
(28%), 119 (100%), 91 (49%); *H NMR (CDCls, 4¢’, 400 MHz): & 2.43 (s, 3H), 7.28 (d, J = 8.0
Hz, 2H), 8.01 (d, J = 8.0 Hz, 2H).

With 2-(1-Bromoethyl)naphthalene (3f) Substrate. The reaction with 3f (23.5 mg, 0.10 mmol)
was heated under air at 200 °C for 14 h to give 2-ethylnaphthalene®! (4f) in 57% NMR vyield,
together with 2-vinylnaphthalene® (4f°) in 7% NMR vyield. *H NMR (CDCls, 4f, 400 MHz): §
1.35 (t, J = 7.5 Hz, 3H), 2.83 (g, J = 7.5 Hz, 3H), 7.35-7.47 (m, 3H), 7.64 (s, 1H), 7.77-7.82 (m,
3H). MS (El, 70 eV) m/z (relative intensity) 156 (37%, M*), 141 (100%), 115 (28%); 'H NMR
(CDCls, 4f°, 400 MHz):  characteristic 5.35 (d, J = 10.8 Hz, 1H), 5.89 (d, J = 17.6 Hz, 1H),
6.90 (dd, J = 17.6, 10.8 Hz, 1H). MS (EI, 70 eV) m/z (relative intensity) 154 (100%, M"), 153

(61%), 152 (41%) 128 (17%).
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Mechanistic Investigations

Deuterium Labeling Experiments

With (Z)-(2,3-Dibromoprop-1-enyl)benzene ((Z)-1a) Substrate. Rh(ttp)Me (4.0 mg, 0.0051
mmol), (Z)-1a (15.5 pL, 0.10 mmol), D20 (90 pL, 5.0 mmol), and 2,6-di-'Bu-pyridine (21 pL,
0.10 mmol) were added to benzene (2 mL). The mixture was heated at 200 °C under air for 6 h.
Excess benzene was removed by rotary evaporation. The crude reaction mixture was passed
through a plug of pipet column eluting with hexane/DCM (4/1), concentrated and then taken for
H NMR analysis with 1,1,2,2-tetrachloroethane (10 pL, 0.0945 mmol) as the internal standard.
2a-d was obtained in 42% NMR yield with 84% D incorporation into the allylic position. The
olefinic position was trace deuterated.

The crude reaction mixture was also taken for GC-MS analysis. EI-MS analysis of 2a-d att =4 h
gave the relative intensity at m/z 196 (6.33%), 197 (35.20%), 198 (10.62%), 199 (34.52%)
(Figure S1). Thus, 2a-do : 2a-d1 = 6.33 : (35.20 — 6.33 x 9 x 0.011) = 6.33 : 34.57 = 15.5 : 84.5.
The deuterium incorporation of 2a-d is (15.5% x 0 + 84.5 % x 1) = 84%. EI-MS analysis of 2a-d
at t = 6 h gave the relative intensity at m/z 196 (7.00%), 197 (34.18%), 198 (11.38%), 199
(34.26%) (Figure S1). Hence, 2a-do : 2a-d1 = 7.00 : (34.18 —7.00 x 9 x 0.011) = 7.00 : 33.49 =
17.3 : 82.7. The deuterium incorporation of 2a-d is (17.3% x 0 + 82.7 % x 1) = 83%. Therefore,
the deuterium incorporations determined by MS analysis are in line with that obtained by 'H

NMR analysis. Furthermore, they did not change with time within the catalysis time scale.
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Figure S1. EI-MS spectra of 2a (reference), and 2a-d att =4 h, 6 h.

With 2-(Bromomethyl)naphthalene (3a) Substrate. Rh(ttp)Me (4.0 mg, 0.0051 mmol), 3a
(22.1 mg, 0.10 mmol), D20 (90 pL, 5.0 mmol), and 2,6-di-'‘Bu-pyridine (21 pL, 0.10 mmol) were
added to benzene (2 mL). The mixture was heated at 200 °C under air for 48 h. Excess benzene
was removed by rotary evaporation. The crude reaction mixture was taken for *H NMR analysis
with 1,1,2 2-tetrachloroethane (10 uL, 0.0945 mmol) as the internal standard. After that, the
mixture was passed through a plug of pipet column eluting with hexane/DCM (4/1), concentrated
and taken for further 'H NMR analysis. 4a-d was obtained in 56% NMR vyield with 95% D
incorporation into the benzylic position, together with 73% D incorporation into the naphthalene

C-1 position. The 73% deuterium incorporation at the naphthalene C-1 position is likely resulted
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from the Rh(ttp)-catalyzed H/D exchange with D.O via the intermediate of

Rh(ttp)(2-naphthylmethyl) (5), which might isomerize to 5° for the deuterium incorporation at

the naphthalene C-1 position (Scheme S5).%

Rh (ttp) Rh(ttp) D. H
“/\Rh(ttp 0.5 D20
-0.5 [Rh(ttp)]2
~0.250,
[Rh(ttp)]2 \
1 D b Rh(ttp)
CH,D _ betaH
- Rh(te) Rh(ttp)
- 0.5 [Rh(ttp)], ellmlnatlon (ttp)
4a-d ~0.25 0,
residual 0.5H,0
— 0.5 [Rh(ttp)]> beta-D
-0.250, elimination

D

H
CHs
4a-d residual 0.5H,0 0.5D,0
- 0.5 [Rh(ttp)], — 0.5 [Rh(ttp)],
-0.250, -0.250,

H

oo CHZD
4a 4a-d

Scheme S5. Proposed Pathway for the Deuterium Incorporation into 4a-d

Determination of Isotopic Product Composition of 4a-d. The hydrodebromination of 3a with
D>0 catalyzed by Rh(ttp)Me was repeated following the standard experimental procedures for 8
times. The reactions mixtures were mixed and the benzene solvent was removed with rotary

evaporator. The resulted black oil was dissolved in 15 mL of DCM and 15 mL 3 M HCI was
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added. The mixture was stirred at room temperature for overnight to remove residual
2,6-di-tert-butylpyridine. The crude mixture was further purified with column chromatography
on silica gel using hexane as eluent and the first fraction was collected as white solid (4a-d, 36
mg, 35%). 'H NMR, *C{1H} NMR and quantitative 3C{1H} NMR spectra with inverse-gated
decoupling were recorded for 4a-d. *H NMR, **C NMR of 4a was also recorded as a reference.
The longitudinal relaxation time (T1) of 3C NMR signal by inversion recovery experiment were
done and calculated using 4a and directly applied to 4a-d. All T; values of 3C signal were no
more than 10 s. Long relaxation delay of 60 s (d1 = 5 x T1) was applied to the quantitative *C

NMR.

2,6-di-(‘Bu)pyridine
(1 equiv) Dy
Br Rh(ttp)Me (5 mol %) CHzDa
D,0 (50 equiv) (81)
CgHe, air, dark

200 °C, 48 h 4a-d
isolated yield: 35%

3a

(0.1 mmol, 50 mM)
trace recovery

Table S5. Deuterium Incorporation Determined by NMR Analysis

Determining D% via NMR Daincorporation% Dy incorporation%
'HNMR (d1=105) 83% 70%
Quantitative 3C NMR (d1 = 60 s) 80% 70%

S22



Table S6. Isotopic Product Composition Determined by Quantitative 3C{*H} NMR Analysis

Label Structure Percentage
H
D
D
H
4a ° °
B N Ju -
dand Jcp=23.8 Hz, t Jecp=19.2 Hz, t
()
Jk I
Jt AN

T T T T T T T T
135 130 125 220 215

Figure S2. Expanded *C NMR spectrum of 4a and quantitative 3C NMR spectrum of 4a-d.
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The Control Experiment for the Post-H/D Exchange of 2-Methylnaphthalene (4a) with D20.

Rh(ttp)Me (4.0 mg, 0.0051 mmol), 4a (14.2 mg, 0.10 mmol), D20 (90 pL, 5.0 mmol), and

2,6-di-'Bu-pyridine (21 pL, 0.10 mmol) were added to benzene (2 mL). The mixture was heated

at 200 °C under air for 48 h. After the reaction, 25 uL of the reaction mixture was taken for

GC-MS analysis with naphthalene spiked as the internal standard. Excess benzene was removed

by rotary evaporation. The crude reaction mixture was taken for 'H NMR analysis with

1,1,2,2-tetrachloroethane (10 uL, 0.0945 mmol) as the internal standard. 4a-d was quantitatively

recovered with trace D incorporation into both the naphthalene C-1 position and benzylic

position. 2,6-Di-'Bu-pyridine was also quantitatively recovered with no D incorporation.
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Hydrolysis of Rh(ttp)(trans-cinnamyl)

Ph
l
Ar
\\N\\' -~
Ar—x NRh\N 77— Ar
= — Z
Ar

Ar = 4-tolyl, Rh(ttp)(trans-cinnamyl)
Preparation of Rh(ttp)(trans-cinnamyl) (6). Rh(ttp)Cl (20.0 mg, 0.025 mmol) in EtOH (2 mL)
and a solution of NaBH4 (55.6 mg, 1.47 mmol) in aqueous NaOH (0.1 M, 1 mL) were purged
with nitrogen separately for about 15 minutes. The solution of NaBH4 was added slowly to the
suspension of Rh(ttp)Cl via a cannula in a period of 30 s under N2. The reaction mixture was
heated at 70 °C for 3 h and the color changed to deep brown. The reaction mixture was then
cooled down to 0 °C and trans-cinnamyl bromide (15 pL, 0.10 mmol) was added under nitrogen.
An orange suspension formed immediately and it was stirred for 10 minutes. After the reaction,
the mixture was diluted with H.O (10 mL), extracted with DCM (5 mL x 3). The combined
organic extracts were washed with H,O (10 mL x 2). Then recrystallization from DCM/MeOH
afforded the purified product 6 as an orange solid (16.1 mg, 0.018 mmol, 72%). Rt = 0.81
(hexane:DCM = 1:1).
'H NMR (CDCls, 400 MHz): 8 —4.03 (dd, 2Jrn-t = 3.6 Hz, 3Ju.n = 8.6 Hz, 2H), —0.90 (dt, J =
15.4, 8.6 Hz, 1H), 2.69 (s, 12H), 2.84 (d, J = 15.3 Hz, 1H), 6.01 (d, J = 7.6 Hz, 2H), 6.91 (t, J =
7.8 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 7.46 (d, J = 7.7 Hz, 4H), 7.52 (d, J = 7.8 Hz, 4H), 7.77 (d, J
= 7.0 Hz, 4H), 8.06 (d, J = 7.0 Hz, 4H), 8.70 (s, 8H).
13C NMR (CDCls, 100 MHz) & 12.2 ({Jrn-c = 26.2 Hz), 21.7, 122.7, 124.0, 125.0, 126.1, 127.4,
127.5,128.3, 131.6, 133.9, 137.2, 137.6, 139.4, 143.7.

HRMS (ESIMS): calcd for Cs7HasNasRh ([M]*) m/z 888.2694, found 888.2697.
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The Sealed NMR Tube Reaction of the Hydrolysis of Rh(ttp)(trans-cinnamyl) (6) with Hz0.
6 (1.4 mg, 0.0016 mmol), H0O (29 pL, 1.6 mmol) and CeDs (400 uL) were added into a Teflon
screw head stoppered NMR tube. The mixture was degassed by three freeze-pump-thaw cycles
(77 K, 0.005 mmHg), and then flame-sealed under vacuum, heated in oven in dark. The reaction
was monitored by *H NMR spectroscopy. Rh(ttp)(trans-cinnamyl) (6) underwent smooth
hydrolysis at 180 °C for 4 h to give trans-g-methylstyrene in 22% NMR vyield with 62%
recovery of 6. The NMR vyields carry 16% error, which is responsible for the unaccounted mass
balance.

The Sealed NMR Tube Reaction of the Hydrolysis of Rh(ttp)(trans-cinnamyl) (6) with D20.
Rh(ttp)(trans-cinnamyl) (6; 1.5 mg, 0.0017 mmol), D20 (30 pL, 33.2 mg, 1.6 mmol) and CsDs
(400 pL) were added into a Teflon screw head stoppered NMR tube. The mixture was degassed
by three freeze-pump-thaw cycles (77 K, 0.005 mmHg), and then flame-sealed under vacuum,
heated in oven in dark. The reaction was monitored by *H NMR spectroscopy. The reaction at
180 °C for 4 h gave deuterated trans S-methyl styrene in 30% yield with 55% recovery of 6. The
NMR vyields carry 15% error, which is responsible for the unaccounted mass balance. There are
77% D, 23% D and 90% D incorporation at the C1, C2 and C3 positions, respectively, as
determined by *H NMR analysis (eq S2). EI-MS results also support the formation of the
deuterated trans-g-methylstyrene (Figure S4). The allylic C3 position is almost all deuterated,
which means the formation of —CDs. The D incorporation at the C1, C2 positions might due to
the Rh(por)-catalyzed H/D exchange with D,O, which also accounts for the over-deuteration at

the allylic C3 position.
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Figure S4. EI-MS spectrum of deuterated trans-S-methylstyrene.

Attempted Determination of Isotopic Product Composition of the Hydrolysis Product of
Deuterated trans-beta-Methylstyrene. Rh(ttp)(trans-cinnamyl) (6; 35.6 mg, 0.04 mmol), D2O
(725 pL, 802.6 mg, 40 mmol) and benzene (2.0 mL) were added into a Teflon screw head
stoppered glass tube, degassed with three freeze-pump-thaw cycles, filled with N2 and heated at
200 °C for 8 h. After the reaction, 25 pL of the reaction mixture was taken for GC-MS analysis
with naphthalene spiked as the internal standard. The reaction was repeated for 8 times and the
reaction mixtures were combined, extracted with DCM, and dried with rotary evaporation. The
residue was purified with column chromatography on silica gel using hexane as eluent to give
the products with a single fraction as a colorless oil. (13.0 mg, 33%). The products contain
deuterated trans-beta-methylstyrene (29%) and deuterated n-propylbenzene (4%) in 8:1 molar
ratio, as determined by 'H NMR and quantitative *C{*H} NMR analysis. The product of
trans-beta-methylstyrene is easy to evaporate with the b.p. of 175 °C, and should be handled

with care. *H NMR and quantitative *C{*H} NMR spectra were recorded.
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Figure S5. *H NMR spectrum of the hydrolysis products of Rh(ttp)(trans-cinnamyl) with D,O.

Calculating of the molar ratio between the deuterated trans-beta-methylstyrene and
deuterated n-propylbenzene: Regarding the aromatic proton signals’ integrations, setting the
molar of deuterated n-propylbenzene: x; deuterated trans-beta-methylstyrene: y. Then 3x +y = 1;
2x + 4y = 3.1. Thus, x = 0.09, y = 0.73 can be obtained. The molar ratio between the deuterated
trans-beta-methylstyrene and deuterated n-propylbenzene is 0.73:0.09 = 8:1. For the quantitative
13C{*H} NMR analysis, the calculated molar ratio is 1:(0.25/2) = 8:1, which is in agreement with
the result of the *H NMR analysis. The C1 position is (0.73 — 0.038)/0.73 = 95% deuterated. The
C2 position is (0.73 — 0.255)/0.73 = 65% deuterated. The C3 position is (0.73 x 3 —0.106)/( 0.73
x 3) = 95% deuterated (eq S3). The allylic C3 position is almost all deuterated, which means the

formation of —CD3, which also accounts for the over-deuteration at the allylic C3 position.
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Figure S6. Expanded quantitative *C{*H} NMR spectra of the hydrolysis products with D>O

(blue), trans-beta-methylstyrene (red), and n-propylbenzene (green).
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29% isolated yield
50% GC yield

recovery not determined

Conversion of Rh(ttp)Br

Ar = 4-tolyl, Rh(ttp)Br
Preparation of Bromol[5,10,15,20-tetratolylporphyrinato]rhodium [Rh(ttp)Br]. Rh(ttp)ClI
(52.1 mg, 0.0645 mmol) and KBr (375.0 mg, 3.15 mmol, 50 equiv) were added to the anhydrous
DCM (20 mL) under N2. The resulting reddish solution with white precipitates was allowed to
react at rt for 40 h in dark by wrapping with aluminum foil until the complete consumption of
Rh(ttp)CI monitored by TLC. After the reaction, H-O was added and the mixture was extracted

with DCM. The organic layer was combined and evaporated to dryness. The product was further
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purified by filtering through a plug of silica eluting with DCM. Recrystallization from
CH2Cl,/MeOH afforded the reddish product of Rh(ttp)Br3* (45.0 mg, 0.0528 mmol, 82%). Rs =
0.69 (CH2Cly). 'H NMR (CDCls, 400 MHz): § 2.71 (s, 12H), 7.55 (d, J = 7.8 Hz, 8H), 8.10 (t, J
= 6.8 Hz, 8H), 8.93 (s, 8H).

The Sealed NMR Tube Reaction of the Conversion of Rh(ttp)Br. Rh(ttp)Br (0.9 mg, 0.001
mmol), H.O (18 uL, 1.0 mmol) and CeDs (400 uL) were added into a Teflon screw head
stoppered NMR tube. The reaction was monitored by *H NMR spectroscopy. Rh(ttp)H3* was
obtained in 27% NMR vyield at 180 °C for 52 h together with 62% recovery of Rh(ttp)Br. The

NMR vyields carry 11% error, which accounts for the unaccounted mass balance.
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X-ray Crystallographic Data

Figure S7. ORTEP presentation of the molecular structure with the numbering scheme for
Rh(ttp)(trans-cinnamyl) (6; CCDC 1813321). with hydrogen atoms omitted for clarity (50%
probability displacement ellipsoids). Rh(ttp)(trans-cinnamyl) (6) selected bond lengths (A):
Rh(1)-C(61): 2.100(9); C(61)-C(62): 1.482(8); C(62)-C(63): 1.292(17); C(63)-C(64):
1.514(18). Bond angles (°): N(1)-Rh(1)-C(61): 89.2(4); N(2)-Rh(1)-C(61): 96.0(3);
N(3)-Rh(1)-C(61): 89.0(4); N(4)-Rh(1)-C(61): 91.0(3); C(62)-C(61)-Rh(1): 111.6(6);

C(63)-C(62)-C(61): 118.9(13); C(62)-C(63)-C(64): 122.3(14).
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Table S7. Crystallographic Data and Structure Refinement for Rh(ttp)(trans-cinnamyl) (6)

Compound Rh(ttp)(trans-cinnamyl) (6)
CCDC deposition No. 1813321

Empirical formula Css.50 Hass0 N4 Rh

Formula weight 010.42

Temperature 222(2) K

Wavelength 0.71073 A

Crystal system, space group Triclinic, P-1

Unit cell dimensions

a=12498(2) A alpha=112.876(4)°

b=14.419(2) A  beta = 91.885(4)°

\olume 2356.3(6) A3

Z, Calculated density 2, 1.283 mg/m3

/Absorption coefficient 0.405 mm™?

F(000) 945

Crystal size 0.500 x 0.400 x 0.300 mm?®
Theta range for data collection 2.056 to 25.302 deg.

Index ranges

-14<h<14,-17<k<17,-11<1<18

Reflections collected / Independent 3476 / 8476
reflections

Completeness to theta = 25.242 deg 99.7%

/Absorption correction multi-scan

Max. and min. transmission 0.7441 and 0.5655

Refinement method

Full-matrix least-squares on F?

Data / restraints / parameters

8476 /10 /587

Goodness-of-fit on F2

0.995

Final R indices [1>2sigma(l)]

R1 =0.0960, wR2 = 0.2507

R indices (all data)

R1=0.1330, wR2 = 0.2743

Largest diff. peak and hole

3.817 and —2.051 e.A3
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C77a

Figure S8. ORTEP presentation of the molecular structure with the numbering scheme for
Rh(ttp)Br (CCDC 1813320) with hydrogen atoms omitted for clarity (50% probability
displacement ellipsoids). Rh(ttp)Br selected bond lengths (A): Rh(1)-Br(1’): 2.3619(9);
Rh(1)-Br(1): 2.300(7). Bond angles (°): N(4)-Rh(1)-N(1): 90.07(17); N(4)-Rh(1)-N(2):
179.14(19); N(4)-Rh(1)-Br(1): 87.7(2).
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Table S8. Crystallographic Data and Structure Refinement for Rh(ttp)Br

Compound Rh(ttp)Br

CCDC deposition No. 1813320

Empirical formula Cu46.44H11531BrsN1202.44Rh3
Formula weight 2630.59

Temperature 302(2) K

Wavelength 0.71073 A

Crystal system, space group Triclinic, P-1

Unit cell dimensions

a=11.4853(8) A alpha =97.727(2)°
b=12.4928(9) A beta=102.976(2)°
¢ = 23.5322(17) A gamma = 97.590(2)°

Volume 3214.0(4) A3

Z, Calculated density 1, 1.359 mg/m®
Absorption coefficient 1.370 mm*

F(000) 1337.0

Crystal size 0.500 x 0.400 x 0.300 mm?®

Theta range for data collection

2.657 to 25.248 deg.

Index ranges

-13<h<13,-14<k<14,-28<1<28

Reflections collected / Independent
reflections

117626 / 11583 [R(int) = 0.0379]

Completeness to theta = 25.242 deg 99.8 %
Absorption correction multi-scan
Max. and min. transmission 0.7456 and 0.5843

Refinement method

Full-matrix least-squares on F?

Data / restraints / parameters

11583/0/784

Goodness-of-fit on F2

1.216

Final R indices [I>2sigma(l)]

R1=0.0577, wR2 = 0.1373

R indices (all data)

R1 =0.0645, wR2 = 0.1404

Largest diff. peak and hole

0.52and —1.10e. A3
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Figure S9. *H NMR Spectrum of (2,2-Dibromocyclopropyl)benzene
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Figure S11. 'H NMR Spectrum of 2a
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Figure S13. *3C NMR Spectrum of (Z)-2a’
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Figure S15. 13C NMR Spectrum of (E)-2a’
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Figure S17. *H NMR Spectrum of 1c
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Figure S19. *H NMR Spectrum of 1e
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Figure S21. *H NMR Spectrum of 3f
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Figure S23. *H NMR Spectrum of Deuterium Labeling Experiment with 3a
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Figure S25. *H NMR Spectrum of 4a-d with d1 =10's
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Figure S27. Inverse-Gated Decoupling **C NMR Spectrum of 4a-d
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Figure S29. *3C NMR Spectrum of 4a
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Figure S30. *H NMR Spectrum of Rh(ttp)(trans-cinnamyl)
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Figure S31. *3C NMR Spectrum of Rh(ttp)(trans-cinnamyl)
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Figure S33. *H NMR Spectrum of trans-beta-Methylstyrene
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Figure S34. Quantitative 3C NMR Spectrum of trans-beta-Methylstyrene
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Figure S35. *H NMR Spectrum of n-Propylbenzene
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Figure S36. Quantitative 3C NMR Spectrum of n-Propylbenzene
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Figure S37. *H NMR Spectrum of Rh(ttp)Br
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HRMS Spectra

Figure S38. HRMS Spectrum of (Z)-(2-bromoprop-1-ene-1,3-diyl)dibenzene ((Z)-2a°)
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Figure S39. HRMS Spectrum of (E)-(2-bromoprop-1-ene-1,3-diyl)dibenzene ((E)-2a”)
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Figure S40. HRMS Spectrum of Rh(ttp)(trans-cinnamyl)
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