Supporting Information

Di- and Tetranuclear Transition Metal Complexes of a Tetrakisguanidino-Substituted Phenazine Dye by Stepwise Coordination

Roxana Lorenz, Elisabeth Kaifer, Hubert Wadepohl, Hans-Jörg Himmel*

Comparison between the results from TD-DFT calculations and the measured UV/Vis spectra as well as assignment of the lowestenergy electronic transitions

Figure S1 a) Comparison between the experimentally obtained electronic absorption spectrum for $[1(NiCl_2)_2]$ dissolved in CH₃CN solution (—) and a simulation (- - -) based on a TD-DFT calculation at the B3LYP-D3/def2-TZVP level; b) Isodensity surfaces of the orbitals contributing to the two most-intense bands at 448 (black) and 472 nm (red).

a)

Figure S2 a) Comparison between the UV/Vis spectrum for $[1+2Bn]Br_2$ in CH₃CN solution (—) and a simulation (---) based on TD-DFT calculations at the B3LYP-D3/def2-TZVP level; b) Isodensity surfaces of the orbitals contributing to the band at 525 nm.

Figure S3 a) Comparison between the UV/Vis spectrum of $[1(NiCl_2)_2(CuCl(CH_3CN))_2]$ in CH₃CN solution (—) and a simulation (- - -) based on a TD-DFT calculations on the B3LYP-D3/def2-TZVP level. b) Isodensity surfaces of the orbitals contributing to the band at 516 nm.

Photos of solutions of 1, $[1(CuCl_2)_2]$, $[1(NiCl_2)_2]$ and $[1+2Bn]Br_2$ (from left to right) in CH₃CN.

Analytical data for all compounds

```
EPR spectra for [1(CuCl<sub>2</sub>)<sub>2</sub>]
```


Figure S4 EPR-spectrum (RT, solid): $g_1 = 2.216$, $g_2 = 2.096$, $g_3 = 2.057$ ($\nu = 9.638289$ GHz).

Figure S5 EPR-spectrum (RT, CH_2CI_2 solution): g = 2.120 (v = 9.63795 GHz).

Absorption and emission spectra for 1

Figure S6 Electronic absorption (red) and emission (black) spectra for **1** in the solid material, in CH₃CN solution, in an Ar matrix (4 K) as well as calculated (B3LYP/TZVP) absorption spectra without and with simulation of the solvent effect by COSMO (ε_r = 37.5).

Analytical data for [1+2R]Br₂

Figure S7 ¹H NMR spectrum (600 MHz) of [1+2Bn]Br₂ dissolved in CD₃CN.

Figure S8 ¹H NMR spectrum (600 MHz) of [1+2(p-NO₂Bn)]Br₂ dissolved in CD₃CN.

Figure S9 ¹H NMR (400 MHz) of $[1+2(F_5Bn)]Br_2$ dissolved in DMSO-d₆.

Figure S10 ¹H NMR (600 MHz) of [1+2(m-MeOBn)]Br₂ dissolved in CD₃CN.

Analytical data for [2+Bn]Br

Figure S11 Electronic absorption and emission spactra (normalized) of [2+Bn]Br in CH_3CN and a simulation based on TD-DFT calculations at the B3LYP/TZVP level.

Figure S12 ¹H NMR spectrum (600 MHz) of [2+Bn]Br dissolved in CD₃CN.

EPR spectrum for [1(CuCl₂)₂(CuCl)₂]

Figure S13 EPR spectrum of $[1(CuCl_2)_2(CuCl)_2]$ in a frozen CH_2Cl_2 solution at 35 K. The fit was obtained with the following parameters: g_{\parallel} = 2.258, g_{\perp} = 2.072, A_{\parallel} = 75 G, A_{\perp} = 25 G.

Analytical data for [1(NiCl₂)₂(CuCl(CH₃CN))₂]

Figure S14 ¹H NMR spectra (200 MHz) of $[1(NiCl_2)_2]$ (bottom) and $[1(NiCl_2)_2(CuCl(CH_3CN))_2]$ (top) dissolved in CD₃CN.

Figure S 15 Variable temperature ¹H NMR spectra from 300 to 340 K (from bottom to top) of $[1(NiCl_2)_2]$ dissolved in CD₃CN.

Figure S16 Variable temperature ¹H NMR spectra from 300 to 340 K (from bottom to top) of $[1(NiCl_2)_2(CuCl(CH_3CN))_2]$ dissolved in CD₃CN.

Analytical data for [2(NiCl₂)]

Figure S17 UV/Vis spectrum of [2(NiCl₂)] dissolved in CH₃CN.

Figure S18 Structure of the complex [2(NiCl₂)]. Vibrational ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. Selected structural parameters (bond distances in Å, angles in °): Ni-Cl1 2.2302(18), Ni-Cl2 2.2294(17), Ni-N1 1.991(4), Ni-N4 1.986(4), N1-C1 1.369(7), N1-C13 1.338(7), N4-C2 1.397(7), N4-C18 1.334(7), (Cl1-Ni-Cl2, N1-Ni-N4) 68.86.

Figure S19 Section of the mixed-valent coordination polymer $[1(CuCl_2)_2(CuCl)_2]_n$. A ball-and-stick representation is shown. Hydrogen atoms omitted for clarity. Selected structural parameters (bond distances in Å, angles in °): Cu1-N1 1.987(4), Cu1-N4 1.964(4), Cu1-Cl1 2.2420(14), Cu1-Cl2 2.2265(15), Cu2-N7 1.981(5), Cu2-Cl3 2.102(3), Cu2-Cl3' 2.669(3), N1-C1 1.388(6), N1-C7 1.342(6), N4-C2 1.368(7), N4-C12 1.329(7), N1-Cu1-N4 82.21(17), Cl1-Cu1-Cl2 99.45(6), N7-Cu2-Cl3 152.69(16), N7-Cu2-Cl3' 118.33(15), Cl3-Cu-Cl3' 88.88(9). Please note that the crystals were of bad quality. Therefore, the structural parameters are afflicted with a large error.

Crystal data: $C_{33.8}H_{55.6}CI_{8.6}Cu_3N_{14}$: $Mr = 1153.61, 0.50 \times 0.20 \times 0.10 \text{ mm}^3$, monoclinic, space group C2/c, a = 21.862(4), b = 24.311(5), c = 14.152(3) Å, $\beta = 117.18(3)^\circ$, V = 6691(3) Å³, Z = 4, d_{calc} = 1.145 Mg m⁻³, Mo-K_{α} radiation (I = 0.71073 Å), T = 100 K, θ_{range} 4.2 to 60.00°. Reflections measd. 55915, indep. 9742, R_{int} = 0.1217. Final R indices [I > 2s(I)]: R₁ = 0.0842, wR₂ = 0.2351.

Fit parameters: J = 1.534; $g_1 = g_2 = 2.07$; $D_1 = D_2 = 11.917$; $E/D_1 = E/D_2 = 2.091$