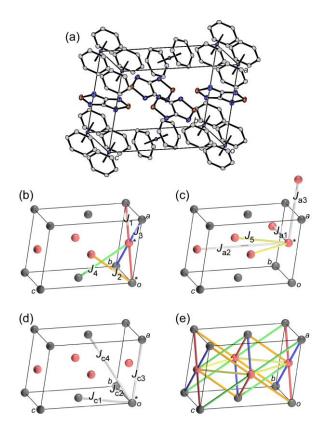
Supplementary information

3D Molecular Network and Magnetic Ordering, Formed by Multi-Dentate Magnetic Couplers of Bis(benzene)chromium(I) and [1,2,5]Thiadiazolo [3,4-c][1,2,5]thiadiazolidyl

Yoshiaki Shuku,^a Yuta Hirai,^a Nikolay A. Semenov,^b Evgeny Kadilenko,^{c,d} Nina P. Gritsan,^{c,d} Andrey V. Zibarev,^{b,d} Oleg A. Rakitin,^e Kunio Awaga^{a*}

^a Department of Chemistry and IRCCS, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. E-mail: awaga@mbox.chem.nagoya-u.ac.jp


^b Institute of Organic Chemistry, and ^c Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

^d Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia

^eN.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 119991, Moscow, Russia

Selected bond	lengths for TDTD / Å	
	TDTD ^a	$[Cr(C_6H_6)_2][TDTD]^b$
S-N	1.619(2)	1.6587(16)
	1.619(2)	1.6661(19)
N-C	1.351(3)	1.341(2)
	1.348(3)	1.343(2)
C-C	1.429(4)	1.449(3)
Selected bond	lengths for $Cr(C_6H_6)_2$ / Å	
	$Cr(C_6H_6)_2^c$	$[Cr(C_6H_6)_2][TDTD]^b$
Cr-C	2.143(2)	2.1515(19)
	2.140(2)	2.1517(18)
		2.1336(18)
		2.1418(18)
		2.1528(18)
		2.154(2)
C-C	1.417(3)	1.420(3)
	1.416(3)	1.413(2)
		1.418(2)
		1.414(3)
		1.419(2)
		1.412(2)
^a Ref 12. ^b This	work. ^c Ref 15.	

 Table S1 Selected bond lengths for TDTD, $Cr(C_6H_6)_2$ and $[Cr(C_6H_6)_2]$ [TDTD].

Fig. S1 Molecular packing (a) and its magnetic interactions J (b-e): Magnetic interactions between $[Cr(C_6H_6)_2]^+$ and $[TDTD]^-$ (b), $[TDTD]^-$ and $[TDTD]^-$ (c), and $[Cr(C_6H_6)_2]^+$ and $[Cr(C_6H_6)_2]^+$ (d) around asterisked molecules. Effective magnetic interactions in a unit cell (e). Gray and red spheres indicates the positions of $[Cr(C_6H_6)_2]^+$ and $[TDTD]^-$. Red, orange, blue, green, yellow and gray lines indicate the representative magnetic interactions J_1 , J_2 , J_3 , J_4 and J_5 , and negligibly small interactions, respectively. Calculated J values are listed in Table S2.

	Chain	Directions	J/cm^{-1}					
			DFT	CASSCF	NEVPT2			
$[Cr(C_6H_6)_2]^+ \cdots [TDTD]^-$								
J_1 (red)	С	[110], [110]		-3.60 ^c	-8.96 ^e			
J_2 (orange)	В	[101]		1.68 ^c	1.70 ^e			
J_3 (blue)	А	[110], [110]		0.06 ^c	-0.30^{e}			
J_4 (green)		[10]]		0.59 ^c	-1.44 ^e			
$[TDTD]^- \cdots [TDTD]^-$								
J_5 (yellow)		[011], [011]	-3.09^{a}	0.29 ^d	-1.16 ^e			
J_{a1}		[010]	0.00^{a}					
J_{a2}		[001]	0.00^{a}					
$J_{\mathrm{a}3}$		[100]	0.00^{a}					
$[Cr(C_6H_6)_2]^+ \cdots [Cr(C_6H_6)_2]^+$								
J_{c1}		[011]	-0.05^{b}					
J_{c2}		[010]	-0.07^{b}					
J_{c3}		[100]	0.11 ^b					
$J_{ m c4}$		[211]	0.02^{b}					
Level of theory and basis sets:								
^a BS-UB3LYP/	TZVP,	^b FS-B3LYP/TZVP,	^c SA-CA	ASSCF(16,13	3)/TZVP,			
^d SA-CASSCF(14,14)/TZVP, ^e SA-CASSCF(14,14)/NEVPT2/TZVP								

Table S2 Intermolecular magnetic coupling constants J in the crystal structure of $[Cr(C_6H_6)][TDTD]$ calculated by DFT, CASSCF and NEVPT2 procedures.

The exchange interactions for pairs $[Cr(C_6H_6)_2]^+ \cdots [TDTD]^-$ predicted using the BS-DFT approach were unreasonably strong (thousands of cm⁻¹). This effect is due to the incorrect wavefunction of the BS-singlet state of these pairs corresponding to the significant back charge transfer from $[TDTD]^-$ to $[Cr(C_6H_6)_2]^+$.